A Novel Approach to Functionalization of Aryl Azides through the Generation and Reaction of Organolithium Species Bearing Masked Azides in Flow Microreactors
Daisuke Ichinari
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Yosuke Ashikari
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Kyoko Mandai
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorYoko Aizawa
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun-ichi Yoshida
National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294 Japan
deceased
Search for more papers by this authorCorresponding Author
Prof. Dr. Aiichiro Nagaki
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDaisuke Ichinari
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Yosuke Ashikari
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorDr. Kyoko Mandai
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorYoko Aizawa
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorCorresponding Author
Prof. Dr. Jun-ichi Yoshida
National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294 Japan
deceased
Search for more papers by this authorCorresponding Author
Prof. Dr. Aiichiro Nagaki
Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510 Japan
Search for more papers by this authorAbstract
A novel straightforward method for aryl azides having functional groups based on generation and reactions of aryllithiums bearing a triazene group from polybromoarenes using flow microreactor systems was achieved. The present approach will serve as a powerful method in organolithium chemistry and open a new possibility in the synthesis of polyfunctional organic azides.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201912419-sup-0001-misc_information.pdf3.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Bräse, K. Banert, Organic Azides: Syntheses and Applications, Wiley-VCH, Weinheim, 2010;
- 1bS. Lang, J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146;
- 1cS. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188; Angew. Chem. 2005, 117, 5320;
- 1dE. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297;
- 1eG. L'abbe, Chem. Rev. 1969, 69, 345;
- 1fP. A. S. Smith, Org. React. 1946, 3, 337.
- 2Reviews on application of organic azides:
- 2aE. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297;
- 2bS. Chiba, Synlett 2012, 23, 21.
- 3
- 3aR. Huisgen in 1,3-Dipolar Cycloaddition Chemistry (Ed.: ), Wiley, New York, 1984, chap. 1, p. 1;
- 3bA. Padwa in Comprehensive Organic Synthesis, Vol. 4 (Eds.: ), Pergamon, Oxford, 1991, p. 1069;
10.1016/B978-0-08-052349-1.00116-5 Google Scholar
- 3cK. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863;
- 3dH. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001, 40, 2004;
10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2056;
- 3eW. H. Binder, C. Kluger, Curr. Org. Chem. 2006, 10, 1791;
- 3fM. V. Gil, M. J. Arévalo, Ó. Lopez, Synthesis 2007, 1589;
- 3gM. Meldal, C. W. Tornoe, Chem. Rev. 2008, 108, 2952;
- 3hC. O. Kappe, E. Van der Eycken, Chem. Soc. Rev. 2010, 39, 1280;
- 3iL. Liang, D. Astruc, Coord. Chem. Rev. 2011, 255, 2933;
- 3jN. V. Sokolovaaband, V. G. Nenajdenko, RSC Adv. 2013, 3, 16212;
- 3kE. Haldón, M. C. Nicasio, P. J. Pérez, Org. Biomol. Chem. 2015, 13, 9528.
- 4Reviews:
- 4aT. Katsuki, Chem. Lett. 2005, 34, 1304;
- 4bK. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040;
- 4cS. Huang, G. Yan, Adv. Synth. Catal. 2017, 359, 1600.
- 5J. H. Boyer, F. C. Canter, Chem. Rev. 1954, 54, 1.
- 6Examples on aromatic substitutions;
- 6aK. A. H. Chehade, H. P. Spielmann, J. Org. Chem. 2000, 65, 4949;
- 6bV. K. Kutonova, M. E. Trusova, P. S. Postnikov, V. D. Filimonov, J. Parello, Synthesis 2013, 45, 2706; A review and examples on diazotization;
- 6cM. E. C. Biffin, J. Miller, D. B. Paul in The Chemistry of the Azido Group (Ed.: ), Wiley, New York, 1971, p. 147;
- 6dJ. C. Kauer, R. A. Carboni, J. Am. Chem. Soc. 1967, 89, 2633;
- 6eM. Takahashi, D. Suga, Synthesis 1998, 986; Examples on the reaction of organometallics with tosyl azide:
- 6fP. A. S. Smith, C. D. Rowe, L. B. Bruner, J. Org. Chem. 1969, 34, 3430;
- 6gP. A. S. Smith, G. F. Budde, S.-S. P. Chou, J. Org. Chem. 1985, 50, 2062;
- 6hJ. Gavenonis, T. D. Tilley, J. Am. Chem. Soc. 2002, 124, 8536;
- 6iJ. Gavenonis, T. D. Tilley, Organometallics 2002, 21, 5549;
- 6jW. Fischer, J.-P. Anselme, J. Am. Chem. Soc. 1967, 89, 5284;
- 6kP. E. Nielsen, Tetrahedron Lett. 1979, 20, 2705;
10.1016/S0040-4039(01)86392-9 Google Scholar
- 6lT. Duan, K. Fan, Y. Fu, C. Zhong, X. Chen, T. Peng, J. Qin, Dyes Pigm. 2012, 94, 28;
- 6mD. J. V. C. van Steenis, O. R. P. David, G. P. F. van Strijdonck, J. H. van Maarseveen, J. N. H. Reek, Chem. Commun. 2005, 4333;
- 6nP. Spagnolo, P. Zanirato, S. Gronowitz, J. Org. Chem. 1982, 47, 3177.
- 7M. Goswami, B. de Bruin, Eur. J. Org. Chem. 2017, 1152–1176.
- 8
- 8aK. D. Grimes, A. Gupte, C. C. Aldrich, Synthesis 2010, 1441;
- 8bV. N. Telvekar, K. A. Sasane, Synth. Commun. 2012, 42, 1085.
- 9Books on flow microreactor synthesis:
- 9aW. Ehrfeld, V. Hessel, H. Löwe, Microreactors, Wiley-VCH, Weinheim, 2000;
10.1002/3527601953 Google Scholar
- 9bV. Hessel, S. Hardt, H. Löwe, Chemical Micro Process Engineering, Wiley-VCH, Weinheim, 2004;
10.1002/3527603042 Google Scholar
- 9cJ. Yoshida, Flash Chemistry. Fast Organic Synthesis in Microsystems, Wiley-Blackwell, Oxford, 2008;
10.1002/9780470723425 Google Scholar
- 9d Micro Precess Engineering (Eds.: ), Wiley-Blackwell, Oxford, 2009;
- 9e Microreactors in Organic Chemistry and Catalysis, 2nd ed. ), Wiley, Hoboken, 2013.
- 10Reviews on flow microreactor synthesis:
- 10aB. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107, 2300;
- 10bB. Ahmed-Omer, J. C. Brandt, T. Wirth, Org. Biomol. Chem. 2007, 5, 733;
- 10cP. Watts, C. Wiles, Chem. Commun. 2007, 443;
- 10dT. Fukuyama, M. T. Rahman, M. Sato, I. Ryu, Synlett 2008, 151;
- 10eR. L. Hartman, K. F. Jensen, Lab Chip 2009, 9, 2495;
- 10fJ. P. McMullen, K. F. Jensen, Annu. Rev. Anal. Chem. 2010, 3, 19;
- 10gJ. Yoshida, H. Kim, A. Nagaki, ChemSusChem 2011, 4, 331;
- 10hC. Wiles, P. Watts, Green Chem. 2012, 14, 38;
- 10iA. Kirschning, L. Kupracz, J. Hartwig, Chem. Lett. 2012, 41, 562;
- 10jD. T. McQuade, P. H. Seeberger, J. Org. Chem. 2013, 78, 6384;
- 10kK. S. Elvira, X. C. i Solvas, R. C. R. Wootton, A. J. deMello, Nat. Chem. 2013, 5, 905;
- 10lJ. C. Pastre, D. L. Browne, S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849;
- 10mI. R. Baxendale, J. Chem. Technol. Biotechnol. 2013, 88, 519;
- 10nT. Fukuyama, T. Totoki, I. Ryu, Green Chem. 2014, 16, 2042;
- 10oH. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque, T. Noël, Chem. Soc. Rev. 2016, 45, 83;
- 10pD. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noël, Chem. Rev. 2016, 116, 10276;
- 10qM. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem. Rev. 2017, 117, 11796.
- 11Selected recent examples:
- 11aS. Fuse, Y. Mifune, T. Takahashi, Angew. Chem. Int. Ed. 2014, 53, 851; Angew. Chem. 2014, 126, 870;
- 11bZ. He, T. F. Jamison, Angew. Chem. Int. Ed. 2014, 53, 3353; Angew. Chem. 2014, 126, 3421;
- 11cM. Chen, S. Ichikawa, S. L. Buchwald, Angew. Chem. Int. Ed. 2015, 54, 263; Angew. Chem. 2015, 127, 265;
- 11dS. Fuse, Y. Mifune, H. Nakamura, H. Tanaka, Nat. Commun. 2016, 7, 13491;
- 11eA. Nagaki, Y. Takahashi, J. Yoshida, Angew. Chem. Int. Ed. 2016, 55, 5327; Angew. Chem. 2016, 128, 5413;
- 11fH. Seo, M. H. Katcher, T. F. Jamison, Nat. Chem. 2017, 9, 453;
- 11gA. Nagaki, H. Yamashita, K. Hirose, Y. Tsuchihashi, J. Yoshida, Angew. Chem. Int. Ed. 2019, 58, 4027; Angew. Chem. 2019, 131, 4067.
- 12
- 12aJ. Yoshida, Chem. Rec. 2010, 10, 332;
- 12bJ. Yoshida, K. Saito, T. Nokami, A. Nagaki, Synlett 2011, 1189.
- 13
- 13aA. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2008, 47, 7833; Angew. Chem. 2008, 120, 7951;
- 13bA. Nagaki, H. Kim, J. Yoshida, Angew. Chem. Int. Ed. 2009, 48, 8063; Angew. Chem. 2009, 121, 8207;
- 13cA. Nagaki, H. Kim, H. Usutani, C. Matsuo, J. Yoshida, Org. Biomol. Chem. 2010, 8, 1212;
- 13dA. Nagaki, H. Kim, Y. Moriwaki, C. Matsuo, J. Yoshida, Chem. Eur. J. 2010, 16, 11167;
- 13eH. Kim, A. Nagaki, J. Yoshida, Nat. Commun. 2011, 2, 264;
- 13fA. Nagaki, Y. Tsuchihashi, S. Haraki, J. Yoshida, Org. Biomol. Chem. 2015, 13, 7140;
- 13gA. Nagaki, Tetrahedron Lett. 2019, 60, 150923.
- 14
- 14aH. Usutani, Y. Tomida, A. Nagaki, H. Okamoto, T. Nokami, J. Yoshida, J. Am. Chem. Soc. 2007, 129, 3046;
- 14bA. Nagaki, Y. Tomida, H. Usutani, H. Kim, N. Takabayashi, T. Nokami, H. Okamoto, J. Yoshida, Chem. Asian J. 2007, 2, 1513;
- 14cA. Nagaki, N. Takabayashi, Y. Tomida, J. Yoshida, Org. Lett. 2008, 10, 3937;
- 14dA. Nagaki, K. Imai, J. Yoshida, RSC Adv. 2011, 1, 758;
- 14eA. Nagaki, Y. Uesugi, H. Kim, J. Yoshida, Chem. Asian J. 2013, 8, 705.
- 15PTP inhibitors:
- 15aJ. Xie, C. T. Seto, Bioorg. Med. Chem. 2007, 15, 458;
- 15bZ. Song, X.-P. He, C. Li, L.-X. Gao, Z.-X. Wanga, Y. Tang, J. Xie, J. Li, G.-R. Chen, Carbohydr. Res. 2011, 346, 140; For P2Y14R antagonists, see:
- 15cA. Junker, R. Balasubramanian, A. Ciancetta, E. Uliassi, E. Kiselev, C. Martiriggiano, K. Trujillo, G. Mtchedlidze, L. Birdwell, K. A. Brown, T. K. Harden, K. A. Jacobson, J. Med. Chem. 2016, 59, 6149;
- 15dJ. Yu, A. Ciancetta, S. Dudas, S. Duca, J. Lottermoser, K. A. Jacobson, J. Med. Chem. 2018, 61, 4860.
- 16
- 16aA. Nagaki, Y. Moriwaki, J. Yoshida, Chem. Commun. 2012, 48, 11211;
- 16bA. Nagaki, Y. Uesugi, Y. Tomida, J. Yoshida, Beilstein J. Org. Chem. 2011, 7, 1064;
- 16cA. Nagaki, A. Kenmoku, Y. Moriwaki, A. Hayashi, J. Yoshida, Angew. Chem. Int. Ed. 2010, 49, 7543; Angew. Chem. 2010, 122, 7705;
- 16dJ. Yoshida, A. Nagaki, D. Yamada, Drug Discovery Today Technol. 2013, 10, e53.
- 17T. Ohishi, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2008, 47, 5792; Angew. Chem. 2008, 120, 5876.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.