Shaping Microcrystals of Metal–Organic Frameworks by Reaction–Diffusion
Dr. Jun Heuk Park
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorDr. Jan Paczesny
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorNamhun Kim
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorCorresponding Author
Prof. Bartosz A. Grzybowski
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorDr. Jun Heuk Park
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorDr. Jan Paczesny
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorNamhun Kim
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorCorresponding Author
Prof. Bartosz A. Grzybowski
IBS Center for Soft and Living Matter and Department of Chemistry, UNIST, 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, South Korea
Search for more papers by this authorAbstract
When components of a metal–organic framework (MOF) and a crystal growth modulator diffuse through a gel medium, they can form arrays of regularly-spaced precipitation bands containing MOF crystals of different morphologies. With time, slow variations in the local concentrations of the growth modulator cause the crystals to change their shapes, ultimately resulting in unusual concave microcrystallites not available via solution-based methods. The reaction–diffusion and periodic precipitation phenomena 1) extend to various types of MOFs and also MOPs (metal–organic polyhedra), and 2) can be multiplexed to realize within one gel multiple growth conditions, in effect leading to various crystalline phases or polycrystalline formations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201910989-sup-0001-misc_information.pdf12 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aI. R. Epstein, J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns and Chaos, Oxford University Press, New York, 1998;
10.1093/oso/9780195096705.001.0001 Google Scholar
- 1bB. A. Grzybowski, K. J. M. Bishop, C. J. Campbell, M. Fialkowski, S. K. Smoukov, Soft Matter 2005, 1, 114–128;
- 1cS. Soh, M. Byrska, K. Kandere-Grzybowska, B. A. Grzybowski, Angew. Chem. Int. Ed. 2010, 49, 4170–4198; Angew. Chem. 2010, 122, 4264–4294;
- 1dI. R. Epstein, B. Xu, Nat. Nanotechnol. 2016, 11, 312–319.
- 2
- 2aR. E. Liesegang, Naturwiss. Wochenschr. 1896, 11, 353–362;
- 2bR. F. Sultan, Phys. Chem. Chem. Phys. 2002, 4, 1253–1261;
- 2cB. Chopard, M. Droz, J. Magnin, Z. Rácz, M. Zrinyi, J. Phys. Chem. A 1999, 103, 1432–1436;
- 2dE. Nakouzi, O. Steinbock, Sci. Adv. 2016, 2, e1601144;
- 2eP. J. Heaney, A. M. Davis, Science 1995, 269, 1562–1565;
- 2fC. J. Campbell, E. Baker, M. Fialkowski, A. Bitner, S. K. Smoukov, B. A. Grzybowski, J. Appl. Phys. 2005, 97, 126102.
- 3
- 3aM. E. Levan, J. Ross, J. Phys. Chem. 1987, 91, 6300–6308;
- 3bS. C. Müller, J. Ross, J. Phys. Chem. A 2003, 107, 7997–8008;
- 3cI. Lagzi, Langmuir 2012, 28, 3350–3354;
- 3dS. K. Smoukov, I. Lagzi, B. A. Grzybowski, J. Phys. Chem. Lett. 2011, 2, 345–349;
- 3eR. Tóth, R. M. Walliser, I. Lagzi, F. Boudoire, M. Duggelin, A. Braun, C. Housecroft, E. C. Constable, Soft Matter 2016, 12, 8367–8374;
- 3fI. Bensemann, M. Fialkowski, B. A. Grzybowski, J. Phys. Chem. B 2005, 109, 2774–2778;
- 3gS. K. Smoukov, A. Bitner, C. J. Campbell, K. Kandere-Grzybowska, B. A. Grzybowski, J. Am. Chem. Soc. 2005, 127, 17803–17807;
- 3hJ. Jiang, K. Sakurai, Langmuir 2016, 32, 9126–9134;
- 3iB. A. Grzybowski, Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology, Wiley, Chichester, 2009;
10.1002/9780470741627 Google Scholar
- 3jI. Lagzi, B. Kowalczyk, B. A. Grzybowski, J. Am. Chem. Soc. 2010, 132, 58–60.
- 4
- 4aR. Z. Douaihy, M. Al-Ghoul, M. Hmadeh, Small 2019, 15, 1901605;
- 4bD. Saliba, M. Ammar, M. Rammal, M. Al-Ghoul, M. Hmadeh, J. Am. Chem. Soc. 2018, 140, 1812–1823;
- 4cM. Al-Ghoul, R. Issa, M. Hmadeh, CrystEngComm 2017, 19, 608–612;
- 4dR. Issa, M. Hmadeh, M. Al-Ghoul, Defect Diffus. Forum 2017, 380, 39–47.
10.4028/www.scientific.net/DDF.380.39 Google Scholar
- 5
- 5aY. H. Wei, S. B. Han, D. A. Walker, P. E. Fuller, B. A. Grzybowski, Angew. Chem. Int. Ed. 2012, 51, 7435–7439; Angew. Chem. 2012, 124, 7553–7557;
- 5bP. J. Wesson, S. Soh, R. Klajn, K. J. M. Bishop, T. P. Gray, B. A. Grzybowski, Adv. Mater. 2009, 21, 1911–1915.
- 6
- 6aI. Stassen, N. Burtch, A. Talin, P. Falcaro, M. Allendorf, R. Ameloot, Chem. Soc. Rev. 2017, 46, 3185–3241;
- 6bY. K. Kim, S.-M. Hyun, J. H. Lee, T. K. Kim, D. Moon, H. R. Moon, Sci. Rep. 2016, 6, 19337;
- 6cP. Sarawade, H. Tan, D. Anjum, D. Cha, V. Polshettiwar, ChemSusChem 2014, 7, 529–535.
- 7C. V. McGuire, R. S. Forgan, Chem. Commun. 2015, 51, 5199–5217.
- 8
- 8aJ. Chen, T. Yu, Z. Chen, H. Xiao, G. Zhou, L. Weng, B. Tu, D. Zhao, Chem. Lett. 2003, 32, 590–591;
- 8bK.-J. Kim, Y. J. Li, P. B. Kreider, C.-H. Chang, N. Wannenmacher, P. K. Thallapally, H.-G. Ahn, Chem. Commun. 2013, 49, 11518–11520;
- 8cY. Mao, L. Shi, H. Huang, Q. Yu, Z. Ye, X. Peng, CrystEngComm 2013, 15, 265–270.
- 9
- 9aG. Wulff, Z. Kristallogr. 1901, 34, 449–530;
- 9bQ. Liu, J.-M. Yang, L.-N. Jin, W.-Y. Sun, CrystEngComm 2016, 18, 4127–4132;
- 9cH.-X. Lin, Z.-C. Lei, Z.-Y. Jiang, C.-P. Hou, D.-Y. Liu, M.-M. Xu, Z.-Q. Tian, Z.-X. Xie, J. Am. Chem. Soc. 2013, 135, 9311–9314;
- 9dC. Avci, J. Ariñez-Soriano, A. Carné-Sánchez, V. Guillerm, C. Carbonell, I. Imaz, D. Maspoch, Angew. Chem. Int. Ed. 2015, 54, 14417–14421; Angew. Chem. 2015, 127, 14625–14629.
- 10
- 10aH. Furukawa, J. Kim, N. W. Ockwig, M. O‘Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2008, 130, 11650–11661;
- 10bN. Zhao, F. Sun, P. Li, X. Mu, G. Zhu, Inorg. Chem. 2017, 56, 6938–6942;
- 10cC. Serre, J. Pelta, Chem 2017, 2, 459–469.
- 11H. Sakamoto, R. Matsuda, S. Kitagawa, Dalton Trans. 2012, 41, 3956–3961.
- 12
- 12aD. Min, S. S. Yoon, D.-Y. Jung, C. Y. Lee, Y. Kim, W. S. Han, S. W. Lee, Inorg. Chim. Acta 2001, 324, 293–299;
- 12bD. Saha, T. Maity, T. Dey, S. Koner, Polyhedron 2012, 35, 55–61.
- 13
- 13aS. Su, Y. Zhang, M. Zhu, X. Song, S. Wang, S. Zhao, S. Song, X. Yang, H. Zhang, Chem. Commun. 2012, 48, 11118–11120;
- 13bY. Han, K. Liu, M. A. Sinnwell, L. Liu, H. Huang, P. K. Thallapally, Inorg. Chem. 2019, 58, 8922–8926.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.