Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species
Lu Xiao
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorChunmei Gu
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Assoc. Prof. Yu Xiang
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorLu Xiao
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorChunmei Gu
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Assoc. Prof. Yu Xiang
Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
Search for more papers by this authorAbstract
RNA-cleaving DNAzymes are useful tools for intracellular metal-ion sensing and gene regulation. Incorporating stimuli-responsive modifications into these DNAzymes enables their activities to be spatiotemporally and chemically controlled for more precise applications. Despite the successful development of many caged DNAzymes for light-induced activation, DNAzymes that can be intracellularly activated by chemical inputs of biological importance, such as reactive oxygen species (ROS), are still scarce. ROS like hydrogen peroxide (H2O2) and hypochlorite (HClO) are critical mediators of oxidative stress-related cell signaling and dysregulation including activation of immune system as well as progression of diseases and aging. Herein, we report ROS-activable DNAzymes by introducing phenylboronate and phosphorothioate modifications to the Zn2+-dependent 8–17 DNAzyme. These ROS-activable DNAzymes were orthogonally activated by H2O2 and HClO inside live human and mouse cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201908105-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. B. Chapman, J. W. Szostak, Curr. Opin. Struct. Biol. 1994, 4, 618–622;
- 1bR. R. Breaker, Nat. Biotechnol. 1997, 15, 427–431;
- 1cR. Fiammengo, A. Jaschke, Curr. Opin. Biotechnol. 2005, 16, 614–621.
- 2R. R. Breaker, G. F. Joyce, Chem. Biol. 1995, 2, 655–660.
- 3B. Cuenoud, J. W. Szostak, Nature 1995, 375, 611–614.
- 4P. Travascio, Y. Li, D. Sen, Chem. Biol. 1998, 5, 505–517.
- 5Y. Li, R. R. Breaker, Proc. Natl. Acad. Sci. USA 1999, 96, 2746–2751.
- 6D. J. F. Chinnapen, D. Sen, Proc. Natl. Acad. Sci. USA 2004, 101, 65–69.
- 7
- 7aD. Faulhammer, M. Famulok, J. Mol. Biol. 1997, 269, 188–202;
- 7bJ. Li, W. C. Zheng, A. H. Kwon, Y. Lu, Nucleic Acids Res. 2000, 28, 481–488;
- 7cJ. W. Liu, A. K. Brown, X. L. Meng, D. M. Cropek, J. D. Istok, D. B. Watson, Y. Lu, Proc. Natl. Acad. Sci. USA 2007, 104, 2056–2061;
- 7dM. Hollenstein, C. Hipolito, C. Lam, D. Dietrich, D. M. Perrin, Angew. Chem. Int. Ed. 2008, 47, 4346–4350; Angew. Chem. 2008, 120, 4418–4422;
- 7eS. F. Torabi, P. Wu, C. E. McGhee, L. Chen, K. Hwang, N. Zheng, J. Cheng, Y. Lu, Proc. Natl. Acad. Sci. USA 2015, 112, 5903–5908;
- 7fR. Saran, J. W. Liu, Anal. Chem. 2016, 88, 4014–4020;
- 7gW. H. Zhou, M. Vazin, T. M. Yu, J. S. Ding, J. W. Liu, Chem. Eur. J. 2016, 22, 9835–9840;
- 7hY. J. Wang, A. K. Ngor, A. Nikoomanzar, J. C. Chaput, Nat. Commun. 2018, 9, 5067.
- 8
- 8aJ. W. Liu, Z. H. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948–1998;
- 8bD. Li, S. P. Song, C. H. Fan, Acc. Chem. Res. 2010, 43, 631–641;
- 8cD. L. Ma, D. S. H. Chan, B. Y. W. Man, C. H. Leung, Chem. Asian J. 2011, 6, 986–1003;
- 8dJ. Li, L. T. Mo, C. H. Lu, T. Fu, H. H. Yang, W. H. Tan, Chem. Soc. Rev. 2016, 45, 1410–1431;
- 8eM. Liu, D. R. Chang, Y. F. Li, Acc. Chem. Res. 2017, 50, 2273–2283;
- 8fW. H. Zhou, R. Saran, J. W. Liu, Chem. Rev. 2017, 117, 8272–8325;
- 8gH. Y. Peng, A. M. Newbigging, Z. X. Wang, J. Tao, W. C. Deng, X. C. Le, H. Q. Zhang, Anal. Chem. 2018, 90, 190–207.
- 9
- 9aV. L. Benson, L. M. Khachigian, H. C. Lowe, Br. J. Pharmacol. 2008, 154, 741–748;
- 9bC. R. Dass, P. F. M. Choong, L. M. Khachigian, Mol. Cancer Ther. 2008, 7, 243–251;
- 9cH. Cai, F. S. Santiago, L. Prado-Lourenco, B. Wang, M. Patrikakis, M. P. Davenport, G. J. Maghzal, R. Stocker, C. R. Parish, B. H. Chong, G. J. Lieschke, T. W. Wong, C. N. Chesterman, D. J. Francis, F. J. Moloney, R. S. Barnetson, G. M. Halliday, L. M. Khachigian, Sci. Transl. Med. 2012, 4, 139ra82;
- 9dA. A. Fokina, D. A. Stetsenko, J. C. Francois, Expert Opin. Biol. Ther. 2015, 15, 689–711;
- 9eW. H. Zhou, J. S. Ding, J. W. Liu, Theranostics 2017, 7, 1010–1025;
- 9fH. Cai, E. A. Cho, Y. Li, J. Sockler, C. R. Parish, B. H. Chong, J. Edwards, T. J. Dodds, P. M. Ferguson, J. S. Wilmott, R. A. Scolyer, G. M. Halliday, L. M. Khachigian, Oncogene 2018, 37, 5115–5126.
- 10
- 10aI. Willner, B. Shlyahovsky, M. Zayats, B. Willner, Chem. Soc. Rev. 2008, 37, 1153–1165;
- 10bZ.-G. Wang, B. Ding, Acc. Chem. Res. 2014, 47, 1654–1662;
- 10cX. Mao, A. J. Simon, H. Pei, J. Shi, J. Li, Q. Huang, K. W. Plaxco, C. Fan, Chem. Sci. 2016, 7, 1200–1204;
- 10dH. Peng, X.-F. Li, H. Zhang, X. C. Le, Nat. Commun. 2017, 8, 14378;
- 10eD. Nedorezova, A. F. F. Fakhardo, D. V. V. Nemirich, E. A. A. Bryushkova, D. M. Kolpashchikov, Angew. Chem. Int. Ed. 2019, 58, 4654–4658; Angew. Chem. 2019, 131, 4702–4706;
- 10fJ.-L. Mergny, D. Sen, Chem. Rev. 2019, 119, 6290–6325.
- 11
- 11aY. Liu, D. Sen, J. Mol. Biol. 2004, 341, 887–892;
- 11bR. Ting, L. Lermer, D. M. Perrin, J. Am. Chem. Soc. 2004, 126, 12720–12721;
- 11cS. Keiper, J. S. Vyle, Angew. Chem. Int. Ed. 2006, 45, 3306–3309; Angew. Chem. 2006, 118, 3384–3387;
- 11dJ. L. Richards, G. K. Seward, Y. H. Wang, I. J. Dmochowski, ChemBioChem 2010, 11, 320–324;
- 11eD. D. Young, M. O. Lively, A. Deiters, J. Am. Chem. Soc. 2010, 132, 6183–6193;
- 11fK. Hwang, P. W. Wu, T. Kim, L. Lei, S. L. Tian, Y. X. Wang, Y. Lu, Angew. Chem. Int. Ed. 2014, 53, 13798–13802; Angew. Chem. 2014, 126, 14018–14022;
- 11gX. Y. Wang, M. L. Feng, L. Xiao, A. J. Tong, Y. Xiang, ACS Chem. Biol. 2016, 11, 444–451;
- 11hM. L. Feng, Z. Y. Ruan, J. C. Shang, L. Xiao, A. J. Tong, Y. Xiang, Bioconjugate Chem. 2017, 28, 549–555.
- 12
- 12aP. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119–191;
- 12bS. Protti, D. Ravelli, M. Fagnoni, Photochem. Photobiol. Sci. 2019, https://doi.org/10.1039/C8PP00512E.
- 13J. Zhao, J. H. Gao, W. T. Xue, Z. H. Di, H. Xing, Y. Lu, L. L. Li, J. Am. Chem. Soc. 2018, 140, 578–581.
- 14
- 14aW. J. Wang, N. S. R. Satyavolu, Z. K. Wu, J. R. Zhang, J. J. Zhu, Y. Lu, Angew. Chem. Int. Ed. 2017, 56, 6798–6802; Angew. Chem. 2017, 129, 6902–6906;
- 14bR. Gao, L. Xu, C. Hao, C. Xu, H. Kuang, Angew. Chem. Int. Ed. 2019, 58, 3913–3917; Angew. Chem. 2019, 131, 3953–3957.
- 15A. Banno, S. Higashi, A. Shibata, M. Ikeda, Chem. Commun. 2019, 55, 1959–1962.
- 16
- 16aD. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579–591;
- 16bC. Nathan, A. Cunningham-Bussel, Nat. Rev. Immunol. 2013, 13, 349–361;
- 16cA. T. Dharmaraja, J. Med. Chem. 2017, 60, 3221–3240.
- 17J. Li, Y. Lu, J. Am. Chem. Soc. 2000, 122, 10466–10467.
- 18
- 18aD. Srikun, E. W. Miller, D. W. Dornaille, C. J. Chang, J. Am. Chem. Soc. 2008, 130, 4596–4597;
- 18bX. Sun, T. D. James, Chem. Rev. 2015, 115, 8001–8037.
- 19Z. J. Zhou, L. Xiao, Y. Xiang, J. Zhou, A. J. Tong, Anal. Chim. Acta 2015, 889, 179–186.
- 20
- 20aL. R. Wang, S. Chen, T. G. Xu, K. Taghizadeh, J. S. Wishnok, X. F. Zhou, D. L. You, Z. X. Deng, P. C. Dedon, Nat. Chem. Biol. 2007, 3, 709–710;
- 20bS. Kellner, M. S. DeMott, C. P. Cheng, B. S. Russell, B. Cao, D. L. You, P. C. Dedon, Nat. Chem. Biol. 2017, 13, 888–894.
- 21J. A. Fidanza, H. Ozaki, L. W. Mclaughlin, J. Am. Chem. Soc. 1992, 114, 5509–5517.
- 22
- 22aK. Traore, M. A. Trush, M. George, E. W. Spannhake, W. Anderson, A. Asseffa, Leuk. Res. 2005, 29, 863–879;
- 22bH. Y. Hsu, M. H. Wen, J. Biol. Chem. 2002, 277, 22131–22139.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.