The First Observation of Hidden Hysteresis in an Iron(III) Spin-Crossover Complex
Theerapoom Boonprab
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorSeok J. Lee
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, New Zealand
Search for more papers by this authorProf. Dr. Shane G. Telfer
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, New Zealand
Search for more papers by this authorProf. Dr. Keith S. Murray
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorDr. Wasinee Phonsri
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorDr. Guillaume Chastanet
CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, 33608 Pessac, France
Search for more papers by this authorProf. Dr. Eric Collet
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, 35000 Rennes, France
Search for more papers by this authorDr. Elzbieta Trzop
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, 35000 Rennes, France
Search for more papers by this authorProf. Dr. Guy N. L. Jameson
School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Phimphaka Harding
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorCorresponding Author
Prof. Dr. David J. Harding
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorTheerapoom Boonprab
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorSeok J. Lee
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, New Zealand
Search for more papers by this authorProf. Dr. Shane G. Telfer
MacDiarmid Institute for Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, New Zealand
Search for more papers by this authorProf. Dr. Keith S. Murray
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorDr. Wasinee Phonsri
School of Chemistry, Monash University, Clayton, Victoria, 3800 Australia
Search for more papers by this authorDr. Guillaume Chastanet
CNRS, Universite de Bordeaux, ICMCB, 87 avenue du Dr A. Schweitzer, 33608 Pessac, France
Search for more papers by this authorProf. Dr. Eric Collet
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, 35000 Rennes, France
Search for more papers by this authorDr. Elzbieta Trzop
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes)—UMR 6251, 35000 Rennes, France
Search for more papers by this authorProf. Dr. Guy N. L. Jameson
School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, Victoria, 3010 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Phimphaka Harding
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorCorresponding Author
Prof. Dr. David J. Harding
Functional Materials and Nanotechnology Center of Excellence, Walailak University, Thasala, Nakhon Si Thammarat, 80160 Thailand
Search for more papers by this authorAbstract
Molecular magnetic switches are expected to form the functional components of future nanodevices. Herein we combine detailed (photo-) crystallography and magnetic studies to reveal the unusual switching properties of an iron(III) complex, between low (LS) and high (HS) spin states. On cooling, it exhibits a partial thermal conversion associated with a reconstructive phase transition from a [HS-HS] to a [LS-HS] phase with a hysteresis of 25 K. Photoexcitation at low temperature allows access to a [LS-LS] phase, never observed at thermal equilibrium. As well as reporting the first iron(III) spin crossover complex to exhibit reverse-LIESST (light-induced excited spin state trapping), we also reveal a hidden hysteresis of 30 K between the hidden [LS-LS] and [HS-LS] phases. Moreover, we demonstrate that FeIII spin-crossover (SCO) complexes can be just as effective as FeII systems, and with the advantage of being air-stable, they are ideally suited for use in molecular electronics.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907619-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1K. S. Murray, Spin-Crossover Materials: Properties and Applications (Ed.: ), Wiley, Chichester, 2013, pp. 1–54.
10.1002/9781118519301.ch1 Google Scholar
- 2P. Gütlich, A. B. Gaspar, Y. Garcia, Beilstein J. Org. Chem. 2013, 9, 342–391.
- 3 Spin-Crossover Materials: Properties and Applications (Ed.: ), Wiley, Chichester, 2013.
- 4J. Linares, E. Codjovi, Y. Garcia, Sensors 2012, 12, 4479–4492.
- 5G. Chastanet, C. Desplanches, C. Baldé, P. Rosa, M. Marchivie, P. Guionneau, Chem. Sq. 2018, 2, 2.
10.28954/2018.csq.07.001 Google Scholar
- 6S. Hayami, Z.-Z. Gu, H. Yoshiki, A. Fujishima, O. Sato, J. Am. Chem. Soc. 2001, 123, 11644–11650.
- 7S. Kang, Y. Shiota, A. Kariyazaki, S. Kanegawa, K. Yoshizawa, O. Sato, Chem. Eur. J. 2016, 22, 532–538.
- 8W. Phonsri, P. Harding, L. Liu, S. G. Telfer, K. S. Murray, B. Moubaraki, T. M. Ross, G. N. L. Jameson, D. J. Harding, Chem. Sci. 2017, 8, 3949–3959.
- 9D. J. Harding, P. Harding, W. Phonsri, Coord. Chem. Rev. 2016, 313, 38–61.
- 10R. Bertoni, M. Lorenc, A. Tissot, M. L. Boillot, E. Collet, Coord. Chem. Rev. 2015, 282–283, 66–76.
- 11M. Nihei, T. Shiga, Y. Maeda, H. Oshio, Coord. Chem. Rev. 2007, 251, 2606–2621.
- 12P. Guionneau, Dalton Trans. 2014, 43, 382–393.
- 13E. Collet, P. Guionneau, C. R. Chim. 2018, 21, 1133–1151.
- 14S. Hayami, Z. Gu, M. Shiro, Y. Einaga, A. Fujishima, O. Sato, J. Am. Chem. Soc. 2000, 122, 7126–7127.
- 15S. Hayami, K. Hiki, T. Kawahara, Y. Maeda, D. Urakami, K. Inoue, M. Ohama, S. Kawata, O. Sato, Chem. Eur. J. 2009, 15, 3497–3508.
- 16T. Shimizu, Y. Komatsu, H. Kamihata, Y. H. Lee, A. Fuyuhiro, S. Iijima, S. Hayami, J. Inclusion Phenom. Macrocyclic Chem. 2011, 71, 363–369.
- 17M. Nakaya, K. Shimayama, K. Takami, K. Hirata, A. S. Alao, M. Nakamura, L. F. Lindoy, S. Hayami, Chem. Lett. 2014, 43, 1058–1060.
- 18K. D. Murnaghan, C. Carbonera, L. Toupet, M. Griffin, M. M. Dîrtu, C. Desplanches, Y. Garcia, E. Collet, J.-F. Létard, G. G. Morgan, Chem. Eur. J. 2014, 20, 5613–5618.
- 19K. Takahashi, K. Kawamukai, M. Okai, T. Mochida, T. Sakurai, H. Ohta, T. Yamamoto, Y. Einaga, Y. Shiota, K. Yoshizawa, Chem. Eur. J. 2016, 22, 1253–1257.
- 20G. Chastanet, M. Lorenc, R. Bertoni, C. Desplanches, C. R. Chim. 2018, 21, 1075–1094.
- 21H. T. Lemke, K. S. Kjær, R. Hartsock, T. B. Van Driel, M. Chollet, J. M. Glownia, S. Song, D. Zhu, E. Pace, S. F. Matar, et al., Nat. Commun. 2017, 8, 15342.
- 22P. Chakraborty, R. Bronisz, C. Besnard, L. Guénée, P. Pattison, A. Hauser, J. Am. Chem. Soc. 2012, 134, 4049–4052.
- 23E. Milin, V. Patinec, S. Triki, E. E. Bendeif, S. Pillet, M. Marchivie, G. Chastanet, K. Boukheddaden, Inorg. Chem. 2016, 55, 11652–11661.
- 24M. M. Ndiaye, S. Pillet, E. E. Bendeif, M. Marchivie, G. Chastanet, K. Boukheddaden, S. Triki, Eur. J. Inorg. Chem. 2018, 305–313.
- 25A. Djemel, O. Stefanczyk, M. Marchivie, E. Trzop, E. Collet, Chem. Eur. J. 2018, 24, 14760–14767.
- 26T. Boonprab, P. Harding, K. S. Murray, W. Phonsri, S. G. Telfer, A. Alkaş, R. Ketkaew, Y. Tantirungrotechai, G. N. L. Jameson, D. J. Harding, Dalton Trans. 2018, 47, 12449–12458.
- 27A. Tissot, R. Bertoni, E. Collet, L. Toupet, M.-L. Boillot, J. Mater. Chem. 2011, 21, 18347.
- 28C.-F. Sheu, S.-M. Chen, G.-H. Lee, Y.-H. Liu, Y.-S. Wen, J.-J. Lee, Y.-C. Chuang, Y. Wang, Eur. J. Inorg. Chem. 2013, 894–901.
- 29A. Tissot, P. Fertey, R. Guillot, V. Briois, M.-L. Boillot, Eur. J. Inorg. Chem. 2014, 101–109.
- 30A. I. Vicente, A. Joseph, L. P. Ferreira, M. de Deus Carvalho, V. H. N. Rodrigues, M. Duttine, H. P. Diogo, M. E. Minas da Piedade, M. J. Calhorda, P. N. Martinho, Chem. Sci. 2016, 7, 4251–4258.
- 31E. Collet, M. L. Boillot, J. Hebert, N. Moisan, M. Servol, M. Lorenc, L. Toupet, M. Buron-Le Cointe, A. Tissot, J. Sainton, Acta Crystallogr. Sect. B 2009, 65, 474–480.
- 32J. K. McCusker, A. L. Rheingold, D. N. Hendrickson, Inorg. Chem. 1996, 35, 2100–2112.
- 33J.-F. Létard, P. Guionneau, L. Rabardel, J. A. K. Howard, A. E. Goeta, D. Chasseau, O. Kahn, Inorg. Chem. 1998, 37, 4432–4441.
- 34A. Desaix, O. Roubeau, J. Jeftic, J. G. Haasnoot, K. Boukheddaden, E. Codjovi, J. Linarès, M. Noguès, F. Varret, Eur. Phys. J. B 1998, 6, 183–193.
- 35P. Gütlich, H. A. Goodwin, Top. Curr. Chem. 2004, 233, 1–47.
- 36P. Gütlich, E. Bill, A. X. Trautwein, Mössbauer Spectroscopy and Transition Metal Chemistry, Springer, Berlin, 2011.
10.1007/978-3-540-88428-6 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.