Gas-Constructed Vesicles with Gas-Moldable Membrane Architectures
Miaomiao Xu
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Liang Chen
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qiang Yan
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
Search for more papers by this authorMiaomiao Xu
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorDr. Liang Chen
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qiang Yan
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, No. 220, Handan Rd., Shanghai, China
Search for more papers by this authorAbstract
Integrating gas as a main building block into nanomaterial construction is a challenging mission that remains elusive. Herein, we report a gas-constructed vesicular system formed by CO2 gas and frustrated Lewis pairs (FLPs). Two molecular triads bearing three bulky borane and phosphine groups are designed as trivalent disc-like FLP monomers. CO2, as a gas cross-linker, can drive the two-dimensional polymerization of these two FLP monomers, leading to the generation of planar FLP networks that further transform into a thermodynamically favored membranous vesicle structure. Gas-guided vesicle formation is also applicable to other inert but FLP-activatable gases. Different gas linkages can form vesicles with distinct architectures, sizes, and morphologies. We envisage that this study would suggest a new concept that exploits gases to fabricate tunable nanomaterials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201907063-sup-0001-misc_information.pdf2.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. E. Discher, A. Eisenberg, Science 2002, 297, 967–973;
- 1bY. Q. Zhu, B. Yang, S. Chen, J. Z. Du, Prog. Polym. Sci. 2017, 64, 1–22;
- 1cB. C. Buddingh’, J. C. M. van Hest, Acc. Chem. Res. 2017, 50, 769–777.
- 2
- 2aJ. W. Szostak, D. P. Bartel, L. Luisi, Nature 2001, 409, 387–390;
- 2bF. H. Meng, Z. Y. Zhong, J. Feijen, Biomacromolecules 2009, 10, 197–209;
- 2cP. Tanner, P. Baumann, R. Enea, O. Onaca, C. Palivan, W. Meier, Acc. Chem. Res. 2011, 44, 1039–1049.
- 3
- 3aI. F. Uchegbu, S. P. Vyas, Int. J. Pharm. 1998, 172, 33–70;
- 3bC. Wang, Z. Q. Wang, X. Zhang, Acc. Chem. Res. 2012, 45, 608–618.
- 4
- 4aY. Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969–5985;
- 4bA. Blanazs, S. P. Armes, A. Ryan, Macromol. Rapid Commun. 2009, 30, 267–277.
- 5
- 5aX. Huang, A. J. Patil, S. Mann, J. Am. Chem. Soc. 2014, 136, 9225–9234;
- 5bW. M. Park, J. A. Champion, J. Am. Chem. Soc. 2014, 136, 17906–17909;
- 5cN. Cottenye, M.-I. Syga, S. Nosov, A. H. E. Müller, C. Vebert-Nardin, Chem. Commun. 2012, 48, 2615–2617;
- 5dQ. J. Luo, Z. Shi, Y. T. Zhang, X.-J. Chen, S. Y. Han, T. Baumgart, D. M. Chenoweth, S.-J. Park, J. Am. Chem. Soc. 2016, 138, 10157–10162.
- 6D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441; Angew. Chem. 2015, 127, 6498–6541.
- 7
- 7aD. W. Stephan, Acc. Chem. Res. 2015, 48, 306–316;
- 7bD. W. Stephan, Science 2016, 354, aaf7229.
- 8
- 8aM. Wang, F. Nudelman, R. R. Matthes, M. P. Shaver, J. Am. Chem. Soc. 2017, 139, 14232–14236;
- 8bU. Yolsal, M. Wang, J. R. Royer, M. P. Shaver, Macromolecules 2019, 52, 3417–3425.
- 9K. Liu, R. A. Lalancette, F. Jäkle, J. Am. Chem. Soc. 2017, 139, 18170–18173.
- 10
- 10aD. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625–2641;
- 10bC. M. Mömming, E. Otten, G. Kehr, R. Fröhlich, S. Grimme, D. W. Stephen, G. Erker, Angew. Chem. Int. Ed. 2009, 48, 6643–6646; Angew. Chem. 2009, 121, 6770–6773.
- 11L. Chen, R. J. Liu, Q. Yan, Angew. Chem. Int. Ed. 2018, 57, 9336–9340; Angew. Chem. 2018, 130, 9480–9484.
- 12B. Wrackmeyer, Annu. Rep. NMR Spectrosc. 1988, 20, 61–200.
- 13Z. B. Niu, F. H. Huang, H. W. Gibson, J. Am. Chem. Soc. 2011, 133, 2836–2839.
- 14G. Zhang, C. Wu, Phys. Rev. Lett. 2001, 86, 822–825.
- 15S. Kang, J. Kim, J.-H. Park, C. K. Ahn, C.-H. Rhee, M. S. Han, Dyes Pigm. 2015, 123, 125–131.
- 16
- 16aD. Kim, E. Kim, J. Lee, S. Hong, W. Sung, N. Lim, C. G. Park, K. Kim, J. Am. Chem. Soc. 2010, 132, 9908–9919;
- 16bS. Fu, H. C. Sun, Q. Luo, C. Hou, J. Y. Xu, Z. Y. Dong, J. Q. Liu, Chem. Commun. 2017, 53, 9024–9027.
- 17
- 17aJ. S. J. McCahill, G. C. Welch, D. W. Stephan, Angew. Chem. Int. Ed. 2007, 46, 4968–4971; Angew. Chem. 2007, 119, 5056–5059;
- 17bE. Otten, R. C. Neu, D. W. Stephan, J. Am. Chem. Soc. 2009, 131, 9918–9919.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.