Asymmetric Catalytic Formal 1,4-Allylation of β,γ-Unsaturated α-Ketoesters: Allylboration/Oxy-Cope Rearrangement
Qiong Tang
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorDr. Kai Fu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorPeiran Ruan
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shunxi Dong
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorProf. Dr. Zhishan Su
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorProf. Dr. Xiaohua Liu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoming Feng
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorQiong Tang
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorDr. Kai Fu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorPeiran Ruan
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shunxi Dong
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorProf. Dr. Zhishan Su
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorProf. Dr. Xiaohua Liu
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Xiaoming Feng
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064 China
Search for more papers by this authorAbstract
A highly enantioselective formal conjugate allyl addition of allylboronic acids to β,γ-unsaturated α-ketoesters has been realized by employing a chiral NiII/N,N′-dioxide complex as the catalyst. This transformation proceeds by an allylboration/oxy-Cope rearrangement sequence, providing a facile and rapid route to γ-allyl-α-ketoesters with moderate to good yields (65–92 %) and excellent ee values (90–99 % ee). The isolation of 1,2-allylboration products provided insight into the mechanism of the subsequent oxy-Cope rearrangement reaction: substrate-induced chiral transfer and a chiral Lewis acid accelerated process. Based on the experimental investigations and DFT calculations, a rare boatlike transition-state model is proposed as the origin of high chirality transfer during the oxy-Cope rearrangement.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201905533-sup-0001-misc_information.pdf16.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews, see:
- 1aA. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796–2823;
- 1bT. Jerphagnon, M. G. Pizzuti, A. J. Minnaard, B. L. Feringa, Chem. Soc. Rev. 2009, 38, 1039–1075;
- 1cT. Thaler, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 645–648; Angew. Chem. 2009, 121, 655–658.
- 2
- 2aA. Hosomi, H. Sakurai, J. Am. Chem. Soc. 1977, 99, 1673–1675;
- 2bG. Majetich, A. Casares, D. Chapman, M. Behnke, J. Org. Chem. 1986, 51, 1745–1753;
- 2cM. Hayashi, T. Mukaiyama, Chem. Lett. 1987, 16, 1719–1722;
- 2dL. F. Tietze, M. Ruther, Chem. Ber. 1990, 123, 1387–1395;
- 2eY.-S. Hon, F. L. Chen, Y.-P. Huang, T.-J. Lu, Tetrahedron: Asymmetry 1991, 2, 879–880;
- 2fM. J. Wu, C. C. Wu, P.-C. Lee, Tetrahedron Lett. 1992, 33, 2547–2548;
- 2gM.-J. Wu, J.-Y. Yeh, Tetrahedron 1994, 50, 1073–1082;
- 2hP. H. Lee, K. Lee, S.-Y. Sung, S. Chang, J. Org. Chem. 2001, 66, 8646–8649, and references therein;
- 2iC. E. Davis, B. C. Duffy, R. M. Coates, J. Org. Chem. 2003, 68, 6935–6943;
- 2jL.-W. Xu, M.-S. Yang, H.-Y. Qiu, G.-Q. Lai, J.-X. Jiang, Synth. Commun. 2008, 38, 1011–1019;
- 2kJ. A. Hilf, M. S. Holzwarth, S. D. Rychnovsky, J. Org. Chem. 2016, 81, 10376–10382.
- 3
- 3aA. Hosomi, H. Iguchi, M. Endo, H. Sakurai, Chem. Lett. 1979, 8, 977–980;
- 3bD. R. Williams, R. J. Mullins, N. A. Miller, Chem. Commun. 2003, 2220–2221;
- 3cA. M. Dumas, E. Fillion, Org. Lett. 2009, 11, 1919–1922.
- 4
- 4aH. O. House, J. M. Wilkins, J. Org. Chem. 1978, 43, 2443–2454;
- 4bB. H. Lipshutz, E. L. Ellsworth, S. H. Dimock, R. A. J. Smith, J. Am. Chem. Soc. 1990, 112, 4404–4410;
- 4cB. H. Lipshutz, C. Hackmann, J. Org. Chem. 1994, 59, 7437–7444;
- 4dD. R. Williams, W. S. Kissel, J. J. Li, Tetrahedron Lett. 1998, 39, 8593–8596.
- 5
- 5aA. Takuwa, Y. Nishigaichi, H. Iwamoto, Chem. Lett. 1991, 20, 1013–1016;
- 5bI. Shibata, T. Kano, N. Kanazawa, S. Fukuoka, A. Baba, Angew. Chem. Int. Ed. 2002, 41, 1389–1392;
10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1447–1450.
- 6A. Yanagisawa, S. Habaue, K. Yasue, H. Yamamoto, J. Am. Chem. Soc. 1994, 116, 6130–6141, and references therein.
- 7
- 7aL. Wang, X. Sun, Y. Zhang, Synth. Commun. 1998, 28, 3263–3267;
- 7bS. Araki, T. Horie, M. Kato, T. Hirashita, H. Yamamura, M. Kawai, Tetrahedron Lett. 1999, 40, 2331–2334;
- 7cP. H. Lee, H. Ahn, K. Lee, S.-Y. Sunga, S. Kimb, Tetrahedron Lett. 2001, 42, 37–39;
- 7dP. H. Lee, K. Lee, S. Kim, Org. Lett. 2001, 3, 3205–3207;
- 7eP. H. Lee, D. Seomoon, S. Kim, K. Nagaiah, S. V. Damle, K. Lee, Synthesis 2003, 2189–2193.
- 8For examples using other allylic reagents, see:
- 8aT. Ooi, Y. Kondo, K. Maruoka, Angew. Chem. Int. Ed. Engl. 1997, 36, 1183–1185; Angew. Chem. 1997, 109, 1231–1233;
- 8bM. Hojo, H. Harada, H. Ito, A. Hosomi, Chem. Commun. 1997, 2077–2078;
- 8cH. M. S. Kumar, B. V. S. Reddy, P. T. Reddy, J. B. Yadav, Tetrahedron Lett. 1999, 40, 5387–5388;
- 8dC. Schneider, O. Reese, Synthesis 2000, 1689–1694;
- 8eH. Ito, T. Nagahara, K. Ishihara, S. Saito, H. Yamamoto, Angew. Chem. Int. Ed. 2004, 43, 994–997; Angew. Chem. 2004, 116, 1012–1015;
- 8fS. K. Mandal, S. Jana, S. C. Roy, Tetrahedron Lett. 2005, 46, 6115–6117;
- 8gS. Hanessian, E. Mainetti, F. Lecomte, Org. Lett. 2006, 8, 4047–4049;
- 8hK.-H. Shen, J.-T. Liu, Y.-R. Wu, C.-F. Yao, Synth. Commun. 2007, 37, 3677–3687;
- 8iM. B. Shaghafi, B. L. Kohn, E. R. Jarvo, Org. Lett. 2008, 10, 4743–4746;
- 8jJ. D. Waetzig, E. C. Swift, E. R. Jarvo, Tetrahedron 2009, 65, 3197–3201;
- 8kL.-M. Zhao, S.-Q. Zhang, F. Dou, R. Sun, Org. Lett. 2013, 15, 5154–5157;
- 8lD.-F. Li, K. Liu, Y.-X. Jiang, Y. Gu, J.-R. Zhang, L.-M. Zhao, Org. Lett. 2018, 20, 1122–1125.
- 9M. Shizuka, M. L. Snapper, Angew. Chem. Int. Ed. 2008, 47, 5049–5051; Angew. Chem. 2008, 120, 5127–5129.
- 10Y. L. Kuang, X. H. Liu, L. Chang, M. Wang, L. L. Lin, X. M. Feng, Org. Lett. 2011, 13, 3814–3817.
- 11C. Diner, K. J. Szabó, J. Am. Chem. Soc. 2017, 139, 2–14.
- 12For racemic example, see:
- 12aJ. D. Sieber, S. Liu, J. P. Morken, J. Am. Chem. Soc. 2007, 129, 2214–2215; for asymmetric examples, see:
- 12bJ. D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2008, 130, 4978–4983;
- 12cL. A. Brozek, J. D. Sieber, J. P. Morken, Org. Lett. 2011, 13, 995–997.
- 13
- 13aX. Li, F. Meng, S. Torker, Y. Shi, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 9997–10002; Angew. Chem. 2016, 128, 10151–10156; for other examples of conjugate allyl addition, see:
- 13bY. Yanagida, R. Yazaki, N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2011, 50, 7910–7914; Angew. Chem. 2011, 123, 8056–8060;
- 13cF. Meng, X. Li, S. Torker, Y. Shi, X. Shen, A. H. Hoveyda, Nature 2016, 537, 387–393;
- 13dY. Huang, S. Torker, X. Li, J. del Pozo, A. H. Hoveyda, Angew. Chem. Int. Ed. 2019, 58, 2685–2691; Angew. Chem. 2019, 131, 2711–2717.
- 14
- 14aJ. L. Y. Chen, H. K. Scott, M. J. Hesse, C. L. Willis, V. K. Aggarwal, J. Am. Chem. Soc. 2013, 135, 5316–5319;
- 14bM. Hesse, S. Essafi, C. Watson, J. Harvey, D. Hirst, C. Willis, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 6145–6149; Angew. Chem. 2014, 126, 6259–6263.
- 15
- 15aR. Wada, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 8910–8911;
- 15bS. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2006, 128, 12660–12661;
- 15cM. Raducan, R. Alam, K. J. Szabó, Angew. Chem. Int. Ed. 2012, 51, 13050–13053; Angew. Chem. 2012, 124, 13227–13230;
- 15dY. Cui, Y. Yamashita, S. Kobayashi, Chem. Commun. 2012, 48, 10319–10321;
- 15eY. Cui, W. Li, T. Sato, Y. Yamashita, S. Kobayashi, Adv. Synth. Catal. 2013, 355, 1193–1205;
- 15fJ. L. Y. Chen, V. K. Aggarwal, Angew. Chem. Int. Ed. 2014, 53, 10992–10996; Angew. Chem. 2014, 126, 11172–11176;
- 15gR. Alam, T. Vollgraff, L. Eriksson, K. J. Szabó, J. Am. Chem. Soc. 2015, 137, 11262–11265.
- 16For selected examples, see:
- 16aR. Wada, T. Shibuguchi, S. Makino, K. Oisaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 7687–7691;
- 16bS. Lou, P. N. Moquist, S. E. Schaus, J. Am. Chem. Soc. 2007, 129, 15398–15404;
- 16cE. M. Vieira, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 3332–3335;
- 16dD. L. Silverio, S. Torker, T. Pilyugina, E. M. Vieira, M. L. Snapper, F. Haeffner, A. H. Hoveyda, Nature 2013, 494, 216–221;
- 16eQ. Y. Tan, X. Q. Wang, Y. Xiong, Z. M. Zhao, L. Li, P. Tang, M. Zhang, Angew. Chem. Int. Ed. 2017, 56, 4829–4833; Angew. Chem. 2017, 129, 4907–4911.
- 17
- 17aH.-P. Deng, D. Wang, K. J. Szabó, J. Org. Chem. 2015, 80, 3343–3348, and references therein. In this work, the author tried to observe the intermediate, allylboration product by monitoring the reaction by 1H NMR spectroscopy, however, this attempt proved to be fruitless. In addition, the similar reaction had been disclosed by employing allyltin, allylnickel, trifluorosilyl, and allyl-indium species. See selected examples:
- 17bY. Naruta, J. Am. Chem. Soc. 1980, 102, 3774–3783;
- 17cL. S. Hegedus, B. R. Evans, D. E. Korte, E. L. Waterman, K. Sjoberg, J. Am. Chem. Soc. 1976, 98, 3901–3909;
- 17dE. Hagiwara, Y. Hatanaka, K.-i. Gohda, T. Hiyama, Tetrahedron Lett. 1995, 36, 2773–2776;
- 17eS. Araki, N. Katsumura, Y. Butsugan, J. Organomet. Chem. 1991, 415, 7–24.
- 18For selected reviews, see:
- 18aL. A. Paquette, Tetrahedron 1997, 53, 13971–14020;
- 18bH. M. L. Davies, Y. Lian, Acc. Chem. Res. 2012, 45, 923–935; for selected examples of Cope rearrangement, see:
- 18cR. J. Felix, D. Weber, O. Gutierrez, D. J. Tantillo, M. R. Gagne, Nat. Chem. 2012, 4, 405–409;
- 18dB. T. Parr, H. M. L. Davies, Angew. Chem. Int. Ed. 2013, 52, 10044–10047; Angew. Chem. 2013, 125, 10228–10231;
- 18eW.-B. Liu, N. Okamoto, E. J. Alexy, A. Y. Hong, K. Tran, B. M. Stoltz, J. Am. Chem. Soc. 2016, 138, 5234–5237;
- 18fX. Gao, M. Xia, C. Yuan, L. Zhou, W. Sun, C. Li, B. Wu, D. Zhu, C. Zhang, B. Zheng, D. Wang, H. Guo, ACS Catal. 2019, 9, 1645–1654;
- 18gC. Apel, S. S. Hartmann, D. Lentz, M. Christmann, Angew. Chem. Int. Ed. 2019, 58, 5075–5079; Angew. Chem. 2019, 131, 5129–5133; for selected examples of aza-Cope and representative Claisen rearrangement, see:
- 18hM. Hiersemann, Eur. J. Org. Chem. 2001, 483–491;
- 18iB. T. Parr, Z. Li, H. M. L. Davies, Chem. Sci. 2011, 2, 2378–2382;
- 18jJ. Mahatthananchai, J. Kaeobamrung, J. W. Bode, ACS Catal. 2012, 2, 494–503;
- 18kB. T. Parr, H. M. L. Davies, Nat. Commun. 2014, 5, 4455–4466;
- 18lB. T. Parr, H. M. L. Davies, Org. Lett. 2015, 17, 794–797;
- 18mS. Rieckhoff, J. Meisner, J. Kästner, W. Frey, R. Peters, Angew. Chem. Int. Ed. 2018, 57, 1404–1408; Angew. Chem. 2018, 130, 1418–1422.
- 19A similar pathway was proposed by Majetich and co-workers in 1986 when they reported a conjugate allyl addition of enone using trimethylallylsilane and fluoride catalysis, however, the subsequently control experiment studies indicated that the 1,2-addition/anionic oxy-Cope rearrangement mechanism was deemed unlikely, for details, see Ref. [2b].
- 20For selected reviews of N,N′-dioxide, see:
- 20aX. H. Liu, L. L. Lin, X. M. Feng, Acc. Chem. Res. 2011, 44, 574–587;
- 20bX. H. Liu, L. L. Lin, X. M. Feng, Org. Chem. Front. 2014, 1, 298–302;
- 20cX. H. Liu, H. F. Zheng, Y. Xia, L. L. Lin, X. M. Feng, Acc. Chem. Res. 2017, 50, 2621–2631;
- 20dX. H. Liu, S. X. Dong, L. L. Lin, X. M. Feng, Chin. J. Chem. 2018, 36, 791–797; for selected examples of 3,3-sigmatropic rearrangement catalyzed by metal salt/N,N′-dioxide complex, see:
- 20eY. B. Liu, X. H. Liu, H. P. Hu, J. Guo, Y. Xia, L. L. Lin, X. M. Feng, Angew. Chem. Int. Ed. 2016, 55, 4054–4058; Angew. Chem. 2016, 128, 4122–4126;
- 20fJ. Li, L. L. Lin, B. W. Hu, P. F. Zhou, T. Y. Huang, X. H. Liu, X. M. Feng, Angew. Chem. Int. Ed. 2017, 56, 885–888; Angew. Chem. 2017, 129, 903–906;
- 20gH. F. Zheng, Y. Wang, C. R. Xu, X. Xu, L. L. Lin, X. H. Liu, X. M. Feng, Nat. Commun. 2018, 9, 1968–1974;
- 20hY. H. Zhou, L. L. Lin, X. H. Liu, X. Y. Hu, Y. Lu, X. Y. Zhang, X. M. Feng, Angew. Chem. Int. Ed. 2018, 57, 9113–9116; Angew. Chem. 2018, 130, 9251–9254;
- 20iY. S. Chen, S. X. Dong, X. Xu, X. H. Liu, X. M. Feng, Angew. Chem. Int. Ed. 2018, 57, 16554–16558; Angew. Chem. 2018, 130, 16792–16796.
- 21Firstly, allyl-Bpin was examined in the current catalytic system. However, no reaction occurred. All the unsuccessful substrates we tested were collected as scope limitations, see Page 4 in the Supporting Information.
- 22We do not have a clear-cut explanation for such differences in the activities of the catalysts derived from amino acids.
- 23CCDC 1893622 (3 aa) and 1889596 (4 aa) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 24In sharp contrast, when (S)-Me-CBS oxazaborolidine was used, much lower diastereoselectivity was obtained (92 % yield with 99 % ee and 53:47 d.r.).
- 25In Ref. [18k], the group of Davies described an oxy-Cope rearrangement process of a similar compound obtained from rhodium-catalyzed reactions of vinyldiazoacetates with (E)-1,3-disubstituted 2-butenols. However, a chairlike TS rather than a boatlike TS was proposed based on experimental studies. A rationale for this difference is attributed to the influence of configuration of the starting materials of rearrangements.
- 26For examples involving a boatlike transition state, see:
- 26aC. Ullenius, P. W. Ford, J. E. Baldwin, J. Am. Chem. Soc. 1972, 94, 5910–5911;
- 26bJ. E. Baldwin, C. Ullenius, J. Am. Chem. Soc. 1974, 96, 1542–1547;
- 26cD. Sperling, H.-U. Reißig, J. Fabian, Liebigs Ann. Recueil 1997, 2443–2449.
10.1002/jlac.199719971207 Google Scholar
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.