Metal-Free Oxidative B−N Coupling of nido-Carborane with N-Heterocycles
Zhongming Yang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeijia Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWei Liu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorXing Wei
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorMeng Chen
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorXiao Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Xiaolei Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yong Liang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Changsheng Lu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong Yan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorZhongming Yang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWeijia Zhao
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorWei Liu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorXing Wei
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorMeng Chen
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorXiao Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Dr. Xiaolei Zhang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yong Liang
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Changsheng Lu
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hong Yan
State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023 China
Search for more papers by this authorAbstract
A general method for the oxidative substitution of nido-carborane (7,8-C2B9H12−) with N-heterocycles has been developed by using 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) as an oxidant. This metal-free B−N coupling strategy, in both inter- and intramolecular fashions, gave rise to a wide array of charge-compensated, boron-substituted nido-carboranes in high yields (up to 97 %) with excellent functional-group tolerance under mild reaction conditions. The reaction mechanism was investigated by density-functional theory (DFT) calculations. A successive single-electron transfer (SET), B−H hydrogen-atom transfer (HAT), and nucleophilic attack pathway is proposed. This method provides a new approach to nitrogen-containing carboranes with potential applications in medicine and materials.
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201904940-sup-0001-misc_information.pdf26.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aN. S. Hosmane in Boron Science: New Technologies and Applications, CRC, Boca Raton, FL, 2011;
10.1201/b11199 Google Scholar
- 1bM. Scholz, E. Hey-Hawkins, Chem. Rev. 2011, 111, 7035;
- 1cR. N. Grimes, Dalton Trans. 2015, 44, 5939–5956;
- 1dR. N. Grimes in Carboranes, 3rd ed., Elsevier, Oxford, 2016.
- 2For selected examples, see:
- 2aT. Peymann, A. Herzog, C. B. Knobler, M. F. Hawthorne, Angew. Chem. Int. Ed. 1999, 38, 1061–1064;
10.1002/(SICI)1521-3773(19990419)38:8<1061::AID-ANIE1061>3.0.CO;2-B CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 1129–1132;
- 2bS. Kongpricha, H. Schroeder, Inorg. Chem. 1969, 8, 2449–2452.
- 3For selected examples, see:
- 3aJ. Li, C. F. Logan, M. Jones, Inorg. Chem. 1991, 30, 4866–4868;
- 3bJ. A. Potenza, W. N. Lipscomb, G. D. Vickers, H. Schroeder, J. Am. Chem. Soc. 1966, 88, 628–629;
- 3cA. Herzog, A. Maderna, G. N. Harakas, C. B. Knobler, M. F. Hawthorne, Chem. Eur. J. 1999, 5, 1212–1217.
10.1002/(SICI)1521-3765(19990401)5:4<1212::AID-CHEM1212>3.0.CO;2-W CAS Web of Science® Google Scholar
- 4
- 4aM. G. L. Mirabelli, L. G. Sneddon, J. Am. Chem. Soc. 1988, 110, 449–453;
- 4bR. Zhang, L. Zhu, G. Liu, H. Dai, Z. Lu, J. Zhao, H. Yan, J. Am. Chem. Soc. 2012, 134, 10341–10344;
- 4cZ. Wang, H. Ye, Y. Li, Z. Li, H. Yan, J. Am. Chem. Soc. 2013, 135, 11289–11298;
- 4dZ. Qiu, Y. Quan, Z. Xie, J. Am. Chem. Soc. 2013, 135, 12192–12195;
- 4eY. Quan, Z. Xie, J. Am. Chem. Soc. 2014, 136, 15513–15516;
- 4fH. Lyu, Y. Quan, Z. Xie, Angew. Chem. Int. Ed. 2015, 54, 10623–10626; Angew. Chem. 2015, 127, 10769–10772;
- 4gK. Cao, Y. Huang, J. Yang, J. Wu, Chem. Commun. 2015, 51, 7257–7260;
- 4hY. Quan, Z. Xie, Angew. Chem. Int. Ed. 2016, 55, 1295–1298; Angew. Chem. 2016, 128, 1317–1320;
- 4iY. Quan, C. Tang, Z. Xie, Chem. Sci. 2016, 7, 5838–5845;
- 4jH. Lyu, Y. Quan, Z. Xie, Angew. Chem. Int. Ed. 2016, 55, 11840–11844; Angew. Chem. 2016, 128, 12019–12023;
- 4kK. Cao, T. Xu, J. Wu, L. Jiang, J. Yang, Chem. Commun. 2016, 52, 11446–11449;
- 4lY. Zhang, Y. Sun, F. Lin, J. Lin, S. Duttwyler, Angew. Chem. Int. Ed. 2016, 55, 15609–15614; Angew. Chem. 2016, 128, 15838–15843;
- 4mR. M. Dziedzic, J. L. Martin, J. C. Axtell, L. M. A. Saleh, T.-C. Ong, Y.-F. Yang, M. S. Messina, A. L. Rheingold, K. N. Houk, A. M. Spokoyny, J. Am. Chem. Soc. 2017, 139, 7729–7732;
- 4nX. Zhang, H. Zheng, J. Li, F. Xu, J. Zhao, H. Yan, J. Am. Chem. Soc. 2017, 139, 14511–14517;
- 4oR. Cheng, Z. Qiu, X. Xie, Nat. Commun. 2017, 8, 14827;
- 4pC.-X. Li, H.-Y. Zhang, T.-Y. Wong, H.-J. Cao, H. Yan, C.-S. Lu, Org. Lett. 2017, 19, 5178–5181;
- 4qY. Quan, Z. Qiu, X. Xie, Chem. Eur. J. 2018, 24, 2795–2805;
- 4rX. Zhang, H. Yan, Chem. Sci. 2018, 9, 3964–3969;
- 4sF. Lin, J.-L. Yu, Y. Shen, S.-Q. Zhang, B. Spingler, J. Liu, X. Hong, S. Duttwyler, J. Am. Chem. Soc. 2018, 140, 13798–13807;
- 4tF. Lin, Y. Shen, Y. Zhang, Y. Sun, J. Liu, S. Duttwyler, Chem. Eur. J. 2018, 24, 551–555;
- 4uH. Lyu, J. Zhang, Y. Quan, X. Xie, J. Am. Chem. Soc. 2019, 141, 4219–4224;
- 4vX. Zhang, H. Yan, Coord. Chem. Rev. 2019, 378, 466–482.
- 5
- 5aC. Tang, J. Zhang, Z. Xie, Angew. Chem. Int. Ed. 2017, 56, 8642–8646; Angew. Chem. 2017, 129, 8768–8772;
- 5bC. Tang, J. Zhang, J. Zhang, Z. Xie, J. Am. Chem. Soc. 2018, 140, 16423–16427.
- 6
- 6aM. F. Hawthorne, D. C. Young, J. Am. Chem. Soc. 1965, 87, 1818–1819;
- 6bJ. Yoo, J.-W. Hwang, Y. Do, Inorg. Chem. 2001, 40, 568–570.
- 7For selected examples, see:
- 7aZ. Xie, Acc. Chem. Res. 2003, 36, 1–9;
- 7bN. S. Hosmane, J. A. Maguire in Comprehensive Organometallic Chemistry III, Vol. 3 (Eds.: ), Elsevier, Oxford, UK, 2007, chap. 5;
- 7cZ. J. Yao, G.-X. Jin, Coord. Chem. Rev. 2013, 257, 2522–2535;
- 7dD. Olid, R. Núñez, C. Viñas, F. Teixidor, Chem. Soc. Rev. 2013, 42, 3318–3336;
- 7eS. A. Anufriev, M. V. Zakharova, M. Y. Stogniy, I. B. Sivaev, V. I. Bregadze, Pure Appl. Chem. 2018, 90, 633–642;
- 7fS. V. Timofeev, O. B. Zhidkova, I. B. Sivaev, Z. A. Starikova, K. Y. Suponitsky, H. Yan, V. I. Bredadze, J. Organomet. Chem. 2018, 867, 342–346.
- 8For selected examples, see:
- 8aY. Zhu, A. T. Peng, K. Carpenter, J. A. Maguire, N. S. Hosmane, M. Takagaki, J. Am. Chem. Soc. 2005, 127, 9875–9880;
- 8bP. Cígler, M. Kožíšek, P. Řezáčová, J. Brynda, Z. Otwinowski, J. Pokorná, J. Plešek, B. Grüner, L. Dolečková-Marešová, M. Máša, J. Sedláček, J. Bodem, H.-G. Kräusslich, V. Král, J. Konvalinka, Proc. Natl. Acad. Sci. USA 2005, 102, 15394–15399;
- 8cJ. Brynda, P. Mader, V. Šícha, M. Fábry, K. Poncová, M. Bokardiev, B. Grüner, P. Cígler, P. Řezáčová, Angew. Chem. Int. Ed. 2013, 52, 13760–13763; Angew. Chem. 2013, 125, 14005–14008;
- 8dM.-B. Sárosi, W. Neumann, T. P. Lybrand, E. Hey-Hawkins, J. Chem. Inf. Model. 2017, 57, 2056–2067;
- 8eD. J. Worm, S. Els-Heindl, M. Kellert, R. Kuhnert, S. Saretz, J. Koebberling, B. Riedl, E. Hey-Hawkins, A. G. Beck-Sickinger, J. Pept. Sci. 2018, 24, e 3119;
- 8fM. Couto, M. F. García, C. Alamón, M. Cabrera, P. Cabral, A. Merlino, F. Teixidor, H. Cerecetto, C. Viñas, Chem. Eur. J. 2018, 24, 3122–3126;
- 8gR. F. Barth, J. Neuro-Oncol. 2003, 62, 1–5;
- 8hM. F. Hawthorne, M. W. Lee, J. Neuro-Oncol. 2003, 62, 33–45;
- 8iJ. Cabrera-González, E. Xochitiotzi-Flores, C. Viñas, F. Teixidor, H. García-Ortega, N. Farfán, R. Santillan, T. Parella, R. Núñez, Inorg. Chem. 2015, 54, 5021–5031.
- 9For selected examples, see:
- 9aB. P. Dash, R. Satapathy, E. R. Gaillard, J. A. Maguire, N. S. Hosmane, J. Am. Chem. Soc. 2010, 132, 6578–6587;
- 9bC. Shi, H. Sun, X. Tang, W. Lv, H. Yan, W. Huang, Angew. Chem. Int. Ed. 2013, 52, 13434–13438; Angew. Chem. 2013, 125, 13676–13680;
- 9cR. Visbal, I. Ospino, J. M. López-de-Luzuriaga, A. Laguna, J. Am. Chem. Soc. 2013, 135, 4712–4715;
- 9dB. Wang, D. P. Shelar, X. Z. Han, T. T. Li, X. Guan, W. Lu, K. Liu, Y. Chen, W. F. Fu, C. M. Che, Chem. Eur. J. 2015, 21, 1184–1190;
- 9eJ. C. Axtell, K. O. Kirilikovali, P. I. Djurovich, D. Jung, V. T. Nguyen, B. Munekiyo, A. T. Royappa, A. L. Rheigold, A. M. Spokoyny, J. Am. Chem. Soc. 2016, 138, 15758–15765;
- 9fK. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, New J. Chem. 2017, 41, 10550–10554;
- 9gN. Van Nghia, S. Jana, S. Sujith, J. Y. Ryu, J. Lee, S. U. Lee, M. H. Lee, Angew. Chem. Int. Ed. 2018, 57, 12483–12488; Angew. Chem. 2018, 130, 12663–12668.
- 10
- 10aL. I. Zakharkin, V. N. Kalinin, G. G. Zhigareva, Russ. Chem. Bull. 1979, 28, 2198–2199;
- 10bV. I. Meshcheryakov, P. S. Kitaev, K. A. Lyssenko, Z. A. Starikova, P. V. Petrovskii, Z. Janoušek, M. Corsini, F. Laschi, P. Zanello, A. R. Kudinov, J. Organomet. Chem. 2005, 690, 4745–4754;
- 10cM. Y. Stogniy, E. N. Abramova, I. A. Lobanova, I. B. Sivaev, V. I. Bragin, P. V. Petrovskii, V. N. Tsupreva, O. V. Sorokina, V. I. Bregadze, Collect. Czech. Chem. Commun. 2007, 72, 1676–1688;
- 10dR. Frank, T. Grell, M. Hiller, E. Hey-Hawkins, Dalton Trans. 2012, 41, 6155–6161;
- 10eR. Frank, H. Auer, E. Hey-Hawkins, J. Organomet. Chem. 2013, 747, 217–224;
- 10fR. Frank, A. K. Adhikari, H. Auer, E. Hey-Hawkins, Chem. Eur. J. 2014, 20, 1440–1446;
- 10gS. V. Timofeev, O. B. Zhidkova, E. A. Prikaznova, I. B. Sivaev, A. Semioshkin, I. A. Godovikov, Z. A. Starikova, V. I. Bregadze, J. Organomet. Chem. 2014, 757, 21–27;
- 10hM. V. Zakharova, I. B. Sivaev, S. A. Anufriev, S. V. Timofeev, K. Yu, K. Y. Suponitsky, I. A. Godovikov, V. I. Bregadze, Dalton Trans. 2014, 43, 5044–5053;
- 10iS. A. Anufriev, I. B. Sivaev, K. Y. Suponitsky, I. A. Godovikov, V. I. Bregadze, Eur. J. Inorg. Chem. 2017, 4436–4443;
- 10jS. A. Anufriev, M. V. Zakharova, I. B. Sivaev, V. I. Bregadze, Russ. Chem. Bull. 2017, 66, 1643–1649;
- 10kS. A. Erokhina, M. Y. Stogniy, K. Y. Suponitsky, I. D. Kosenko, I. B. Sivaev, V. I. Bregadze, Polyhedron 2018, 153, 145–151;
- 10lM. Y. Stogniy, S. A. Erokhina, K. Y. Suponitsky, A. A. Anisimov, I. B. Sivaev, V. I. Bregadze, New J. Chem. 2018, 42, 17958–17967.
- 11
- 11aP. Tokarz, P. Kaszyński, S. Domagala, K. Wozniak, J. Organomet. Chem. 2015, 798, 70–79;
- 11bJ. Pecyna, P. Kaszyński, B. Ringstrand, D. Pociecha, S. Pakhomov, A. G. Douglass, V. G. Young, Jr., Inorg. Chem. 2016, 55, 4016–4025;
- 11cA. N. Hajhussein, L. S. Abyzahra, A. Pietrzak, M. F. Sadek, M. O. Ali, J. Wojciechowski, A. C. Friedli, P. Kaszyński, ARKIVOC 2018, part vii, 225–235;
- 11dR. Zurawiński, R. Jakubowski, S. Domagala, P. Kaszyński, K. Wozniak, Inorg. Chem. 2018, 57, 10442–10456;
- 11eM. O. Ali, J. C. Lasseter, R. Zurawiński, A. Pietrzak, J. Pecyna, J. Wojciechowski, A. C. Friedli, D. Pociecha, P. Kaszyński, Chem. Eur. J. 2019, 25, 2616–2630.
- 12
- 12aR. Núñez, M. Tarrés, A. Ferrer-Ugalde, F. F. Biani, F. Teixidor, Chem. Rev. 2016, 116, 14307–14378;
- 12bN. Van Nghia, J. Oh, J. Jung, M. H. Lee, Organometallics 2017, 36, 2573–2580.
- 13For selected examples, see:
- 13aA. H. Soloway, W. Tjarks, B. A. Barnum, F. G. Rong, R. F. Barth, I. M. Codogni, J. G. Wilson, Chem. Rev. 1998, 98, 1515–1562;
- 13bM. F. Hawthorne, A. Maderna, Chem. Rev. 1999, 99, 3421–3434;
- 13cI. V. Korolkov, A. L. Kozlovskiy, Y. G. Gorin, A. V. Kazantsev, D. I. Shlimas, M. V. Zdorovets, N. K. Ualieva, V. S. Rusakov, J. Nanopart. Res. 2018, 20, 240;
- 13dT. O. B. Olusanya, G. Calabrese, D. G. Fatouros, J. Tsibouklis, J. R. Smith, Biophys. Chem. 2019, 247, 25–33.
- 14
- 14aN. S. Hosmane, J. A. Maguire, Eur. J. Inorg. Chem. 2003, 3989–3999;
- 14bZ. Xie, Coord. Chem. Rev. 2006, 250, 259–272;
- 14cH. Shen, Z. Xie, J. Am. Chem. Soc. 2010, 132, 11473–11480.
- 15
- 15aR. M. Dziedzic, L. M. Saleh, J. C. Axtell, J. L. Martin, S. L. Stevens, A. T. Royappa, A. L. Rheingold, A. M. Spokoyny, J. Am. Chem. Soc. 2016, 138, 9081–9084;
- 15bH. Lyu, Y. Quan, Z. Xie, J. Am. Chem. Soc. 2016, 138, 12727–12730;
- 15cH. Li, F. Bai, H. Yan, C. Lu, V. I. Bregadze, Eur. J. Org. Chem. 2017, 1343–1352;
- 15dY. Shen, Y. Pan, K. Zhang, X. Liang, J. Liu, B. Spingler, S. Duttwyler, Dalton Trans. 2017, 46, 3135–3140.
- 16A. B. Buades, V. S. Arderiu, D. Olid-Britos, C. Viñas, R. Sillanpää, M. Haukka, X. Fontrodona, M. Paradinas, C. Ocal, F. Teixidor, J. Am. Chem. Soc. 2018, 140, 2957–2970.
- 17H. C. Kang, S. S. Lee, C. B. Knobler, M. F. Hawthorne, Inorg. Chem. 1991, 30, 2024–2031.
- 18The Nu values were obtained from Mayr's database (http://www.cup.lmu.de/oc/mayr/reaktionsdatenbank).
- 19
- 19aY. Quan, Z. Xie, J. Am. Chem. Soc. 2015, 137, 3502–3505;
- 19bD. Zhao, J. Zhang, Z. Xie, J. Am. Chem. Soc. 2015, 137, 13938–13942;
- 19cT. L. Chan, Z. Xie, Chem. Sci. 2018, 9, 2284–2289;
- 19dR. Zhang, Y. Yuan, Z. Qiu, Z. Xie, Chin. J. Chem. 2018, 36, 273–279;
- 19eZ. X. Giustra, S. Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184–1194;
- 19fK. Edel, J. S. A. Ishibashi, S. Y. Liu, H. F. Bettinger, Angew. Chem. Int. Ed. 2019, 58, 4061–4064; Angew. Chem. 2019, 131, 4103–4106;
- 19gC.-Y. Zhang, K. Cao, T.-T. Xu, L. Jiang, J. Yang, Chem. Commun. 2019, 55, 830–833.
- 20
- 20aJ. H. Wright, C. E. Kefalidis, F. S. Tham, L. Maron, V. Lavallo, Inorg. Chem. 2013, 52, 6223–6229;
- 20bM. Asay, C. E. Kefalidis, J. Estrada, D. S. Weinberger, J. Wright, C. E. Moore, A. L. Rheingold, L. Maron, V. Lavallo, Angew. Chem. Int. Ed. 2013, 52, 11560–11563; Angew. Chem. 2013, 125, 11774–11777;
- 20cA. L. Chan, J. Fajardo, Jr., J. H. Wright II, M. Asay, V. Lavallo, Inorg. Chem. 2013, 52, 12308–12310;
- 20dY. Sun, J. Zhang, Y. Zhang, J. Liu, S. van der Veen, S. Duttwyler, Chem. Eur. J. 2018, 24, 10364–10371.
- 21For selected examples, see:
- 21aL. Zhu, S. Liu, H. Yan, Q. Zhao, W. Huang, Chem. Commun. 2013, 49, 10638–10640;
- 21bC. Shi, H. Sun, Q. Jiang, Q. Zhao, J. Wang, W. Huang, Chem. Commun. 2013, 49, 4746–4748;
- 21cY. Lee, J. Park, J. Lee, S. Lee, M. Lee, J. Am. Chem. Soc. 2015, 137, 8018–8021;
- 21dD. Tu, P. Leong, S. Guo, H. Yan, C. Lu, Q. Zhao, Angew. Chem. Int. Ed. 2017, 56, 11370–11374; Angew. Chem. 2017, 129, 11528–11532;
- 21eJ. Li, C. Yang, X. Peng, Y. Chen, Q. Qi, X. Luo, W.-Y. Lai, W. Huang, J. Mater. Chem. C 2018, 6, 19–28;
- 21fR. Huang, K. Liu, H. Liu, G. Wang, T. Liu, R. Miao, H. Peng, Y. Fang, Anal. Chem. 2018, 90, 14088–14093;
- 21gX. Wu, J. Guo, Y. Quan, W. Jia, D. Jia, Y. Chen, Z. Xie, J. Mater. Chem. C 2018, 6, 4140–4149;
- 21hM. Z. Shafikov, A. F. Suleymanova, A. Schinabeck, H. Yersin, J. Phys. Chem. Lett. 2018, 9, 702–709;
- 21iS.-Y. Kim, Y.-J. Cho, H.-J. Son, D. W. Cho, S. O. Kang, J. Phys. Chem. A 2018, 122, 3391–3397;
- 21jH. Mori, K. Nishino, K. Wada, Y. Morisaki, K. Tanaka, Y. Chujo, Mater. Chem. Front. 2018, 2, 573–579;
- 21kA. V. Marsh, N. J. Cheetham, M. Little, M. Dyson, A. J. P. White, P. Beavis, C. N. Warriner, A. C. Swain, P. N. Stavrinou, M. Heeney, Angew. Chem. Int. Ed. 2018, 57, 10640–10645; Angew. Chem. 2018, 130, 10800–10805;
- 21lK. Nishino, K. Uemura, K. Tanaka, Y. Chujo, New J. Chem. 2018, 42, 4210–4214;
- 21mZ. Peng, K. Zhang, Z. Huang, Z. Wang, S. Duttwyler, Y. Wang, P. Luk, J. Mater. Chem. C 2019, 7, 2430–2435.
- 22CCDC 1894860 (2 a), 1894861 (2 g), 1894862 (2 l), 1894865 (2 r), 1894866 (2 s), 1894867 (3 a), 1894868 (4 c), 1562245 (7 c), 1894869 (7 g-1), 1894871 (7 g-2), 1562248 (7 h), 1562249 (7 i), 1562251 (7 j), 1562259 (7 k), 1562242 (6 e’) and 1562239 (6 h’) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.