REI5O14 (RE=Y and Gd): Promising SHG Materials Featuring the Semicircle-Shaped I5O143− Polyiodate Anion
Jin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Chun-Li Hu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Fei-Fei Mao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Bing-Ping Yang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorXiao-Han Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiang-Gao Mao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorJin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Chun-Li Hu
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Fei-Fei Mao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
University of the Chinese Academy of Sciences, Beijing, 100039 P. R. China
Search for more papers by this authorDr. Bing-Ping Yang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorXiao-Han Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Jiang-Gao Mao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorAbstract
The first examples of rare-earth polyiodates, namely, REI5O14 (RE=Y and Gd), have been prepared by hydrothermal reactions of RE2O3 and H5IO6 in H3PO4 (≥85 wt % in H2O), with extremely high yields (>95 %). They crystalize in the polar space group Cm and feature a brand-new semicircle-shaped [I5O14]3− pentameric polyiodate anion composed of two IO3 and three IO4 polyhedra. Remarkably, both compounds exhibit very large second-harmonic generation (SHG) signals (14× and 15×KH2PO4 (KDP) upon 1064 nm laser radiation for Y and Gd compounds, respectively). Our work shows that the hydrothermal reaction in a phosphoric acid medium facilitates the formation of rare-earth polyiodates.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201904383-sup-0001-misc_information.pdf1.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. H. Dunn, M. Ebrahimzadeh, Science 1999, 286, 1513–1517.
- 2M. S. Wickleder, Chem. Rev. 2002, 102, 2011–2088.
- 3C. L. Hu, J. G. Mao, Coord. Chem. Rev. 2015, 288, 1–17.
- 4J. Chen, C. L. Hu, F. F. Mao, J. H. Feng, J. G. Mao, Angew. Chem. Int. Ed. 2019, 58, 2098–2102; Angew. Chem. 2019, 131, 2120–2124.
- 5F. F. Mao, C. L. Hu, X. Xu, D. Yan, B. P. Yang, J. G. Mao, Angew. Chem. Int. Ed. 2017, 56, 2151–2155; Angew. Chem. 2017, 129, 2183–2187.
- 6H. W. Yu, M. L. Nisbet, K. R. Poeppelmeier, J. Am. Chem. Soc. 2018, 140, 8868–8876.
- 7K. M. Ok, Acc. Chem. Res. 2016, 49, 2774–2785.
- 8Z. G. Xia, K. R. Poeppelmeier, Acc. Chem. Res. 2017, 50, 1222–1230.
- 9H. Y. Chang, S. H. Kim, P. S. Halasyamani, K. M. Ok, J. Am. Chem. Soc. 2009, 131, 2426–2427.
- 10H. Y. Chang, S. H. Kim, K. M. Ok, P. S. Halasyamani, J. Am. Chem. Soc. 2009, 131, 6865–6873.
- 11H. Y. Kim, T. T. Tran, P. S. Halasyamani, K. M. Ok, Inorg. Chem. Front. 2015, 2, 361–368.
- 12F. F. Mao, C. L. Hu, J. Chen, J. G. Mao, Chem. Mater. 2018, 30, 2443–2452.
- 13H. M. Liu, X. X. Jiang, X. X. Wang, L. Yang, Z. S. Lin, Z. G. Hu, X. G. Meng, X. G. Chen, J. G. Qin, J. Mater. Chem. C 2018, 6, 4698–4705.
- 14B. P. Yang, C. L. Hu, X. Xu, C. F. Sun, J. H. Zhang, J. G. Mao, Chem. Mater. 2010, 22, 1545–1550.
- 15C. F. Sun, C. L. Hu, X. Xu, B. P. Yang, J. G. Mao, J. Am. Chem. Soc. 2011, 133, 5561–5572.
- 16R. E. Sykora, K. M. Ok, P. S. Halasyamani, D. M. Wells, T. E. Albrecht-Schmitt, Chem. Mater. 2002, 14, 2741–2749.
- 17C. F. Sun, C. L. Hu, X. Xu, J. B. Ling, T. Hu, F. Kong, X. F. Long, J. G. Mao, J. Am. Chem. Soc. 2009, 131, 9486–9487.
- 18H. X. Tang, Y. X. Zhang, C. Zhou, R. B. Fu, H. Lin, Z. J. Ma, X. T. Wu, Angew. Chem. Int. Ed. 2019, 58, 3824–3828; Angew. Chem. 2019, 131, 3864–3868.
- 19R. E. Sykora, K. M. Ok, P. S. Halasyamani, T. E. Albrecht-Schmitt, J. Am. Chem. Soc. 2002, 124, 1951–1957.
- 20Y. Li, H. Wu, B. Zhang, Z. Yang, G. Han, S. L. Pan, Inorg. Chem. 2018, 57, 9376–9384.
- 21S. D. Nguyen, J. Yeon, S. H. Kim, P. S. Halasyamani, J. Am. Chem. Soc. 2011, 133, 12422–12425.
- 22H. Liu, Q. Wu, X. Jiang, Z. Lin, X. Meng, X. Chen, J. Qin, Angew. Chem. Int. Ed. 2017, 56, 9492–9496; Angew. Chem. 2017, 129, 9620–9624.
- 23M. Zhang, X. Su, M. Miriding, Z. Yang, S. L. Pan, Chem. Mater. 2017, 29, 945–949.
- 24Z. B. Cao, Y. C. Yue, J. Y. Yao, Z. S. Lin, R. He, Z. G. Hu, Inorg. Chem. 2011, 50, 12818–12822.
- 25Q. Wu, H. M. Liu, F. C. Jiang, L. Kang, L. Yang, Z. S. Lin, Z. G. Hu, X. G. Chen, X. G. Meng, J. G. Qin, Chem. Mater. 2016, 28, 1413–1418.
- 26M. Zhang, C. Hu, T. Abudouwufu, Z. Yang, S. L. Pan, Chem. Mater. 2018, 30, 1136–1145.
- 27S. P. Guo, Y. Chi, G. C. Guo, Coord. Chem. Rev. 2017, 335, 44–57.
- 28U. Croatto, G. Bryk, Gazz. Chim. Ital. 1941, 71, 590–596.
- 29K. M. Ok, P. S. Halasyamani, Angew. Chem. Int. Ed. 2004, 43, 5489–5491; Angew. Chem. 2004, 116, 5605–5607.
- 30K. M. Ok, P. S. Halasyamani, Inorg. Chem. 2005, 44, 9353–9359.
- 31D. Phanon, I. Gautier-Luneau, Angew. Chem. Int. Ed. 2007, 46, 8488–8491; Angew. Chem. 2007, 119, 8640–8643.
- 32I. Gautier-Luneau, Y. Suffren, H. Jamet, J. Z. Pilme, Z. Anorg. Allg. Chem. 2010, 636, 1368–1379.
- 33X. Xu, C. L. Hu, B. X. Li, B. P. Yang, J. G. Mao, Chem. Mater. 2014, 26, 3219–3230.
- 34X. Xu, B. P. Yang, C. Huang, J. G. Mao, Inorg. Chem. 2014, 53, 1756–1763.
- 35F. F. Mao, C. L. Hu, J. Chen, B. L. Wu, J. G. Mao, Inorg. Chem. 2019, 58, 3982–3989.
- 36A. C. Bean, C. F. Campana, O. Kwon, T. E. Albrecht-Schmitt, J. Am. Chem. Soc. 2001, 123, 8806–8810.
- 37T. Hu, L. Qin, F. Kong, Y. Zhou, J. G. Mao, Inorg. Chem. 2009, 48, 2193–2199.
- 38F. F. Mao, C. L. Hu, B. X. Li, J. G. Mao, Inorg. Chem. 2017, 56, 14357–14365.
- 39S. J. Oh, H. G. Kim, H. Jo, T. G. Lim, J. S. Yoo, K. M. Ok, Inorg. Chem. 2017, 56, 6973–6981.
- 40D. Phanon, Y. Suffren, M. B. Taouti, D. Benbertal, A. Brenier, I. Gautier-Luneau, J. Mater. Chem. C 2014, 2, 2715–2723.
- 41X. A. Chen, X. A. Chang, H. G. Zang, Q. Wang, W. Q. Xiao, J. Alloys Compd. 2005, 396, 255–259.
- 42T. Abudouwufu, M. Zhang, S. Cheng, Z. H. Yang, S. L. Pan, Chem. Eur. J. 2019, 25, 1221–1226.
- 43Crystal data of YI5O14: a=5.4624(3) Å, b=17.9206(8) Å, c=6.0492(3) Å, α=γ=90°, β=90.151(4)°, V=592.15(5) Å3. Crystal data of GdI5O14: a=5.4743(2) Å, b=17.9589(10) Å, c=6.0490(3) Å, α=γ=90°, β=90.022(4)°, V=594.69(5) Å3. CCDC 1905458 (YI5O14) and 1905459 (GdI5O14) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- 44M. Qie, J. Lin, F. Kong, M. A. Silver, Z. Yue, X. Wang, L. Zhang, H. Bao, T. E. Albrecht-Schmitt, J. Q. Wang, Inorg. Chem. 2018, 57, 1676–1683.
- 45Y. Wang, T. Duan, Z. Weng, J. Ling, X. Yin, L. Chen, D. Sheng, J. Diwu, Z. Chai, N. Liu, S. Wang, Inorg. Chem. 2017, 56, 13041–13050.
- 46W. X. Chai, J. A. Lin, L. Song, K. Y. Shu, L. S. Qin, H. S. Shi, J. Y. Guo, Solid State Sci. 2010, 12, 2100–2105.
- 47D. Phanon, A. Mosset, I. Gautier-Luneau, Solid State Sci. 2007, 9, 496–505.
- 48L. Xiao, Z. B. Cao, J. Y. Yao, Z. S. Lin, Z. G. Hu, J. Mater. Chem. C 2017, 5, 2130–2134.
- 49P. A. Maggard, T. S. Nault, C. L. Stern, K. R. Poeppelmeier, J. Solid State Chem. 2003, 175, 27–33.
- 50H. K. Izumi, J. E. Kirsch, C. L. Stern, K. R. Poeppelmeier, Inorg. Chem. 2005, 44, 884–895.
- 51T. Sivakumar, Y. C. Hong, J. Baek, P. S. Halasyamani, Chem. Mater. 2007, 19, 4710–4715.
- 52J. Galy, G. Meunier, S. Andersson, A. Åström, J. Solid State Chem. 1975, 13, 142–148.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.