Phase Regulation Strategy of Perovskite Nanocrystals from 1D Orthomorphic NH4PbI3 to 3D Cubic (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 Phase Enhances Photoluminescence
Chao Wang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYue Liu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorDr. Xia Feng
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorChenyang Zhou
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYalan Liu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorDr. Xi Yu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangjiu Zhao
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorChao Wang
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYue Liu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorDr. Xia Feng
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorChenyang Zhou
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorYalan Liu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorDr. Xi Yu
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Guangjiu Zhao
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, National Demonstration Center for Experimental Chemistry & Chemical engineering Education, National Virtual Simulation Experimental Teaching Center for Chemistry & Chemical Engineering Education, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300354 China
Search for more papers by this authorAbstract
This work reports this first synthesis of 1D orthomorphic NH4PbI3 perovskite nanocrystals (NCs) considering the role of inorganic ammonium ions at the nanoscale. The addition of bromide ions at the halogen site did not improve the photoluminescence properties. Furthermore, the 3D cubic phase of (NH4)0.5Cs0.5Pb(I0.5Br0.5)3 NCs with bright photoluminescence was synthesized by adding Cs ions into the crystal lattice of (NH4)Pb(I0.5Br0.5)3. Moreover, the photophysical properties of different phase structures were studied using femtosecond transient absorption (FTA) spectroscopy. The ultrafast trap state capture process is a key factor in the change of photoluminescence properties and the cubic phase may be the best structure for photoluminescence. These results suggest that the ammonium ion perovskite (AIP) nanocrystals could be potential materials for optoelectronic applications through A-site cation substitution.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201903121-sup-0001-misc_information.pdf1.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Schmidt, A. Pertegas, S. Gonzalez-Carrero, O. Malinkiewicz, S. Agouram, E. Minguez, H. Bolink, R. Galian, J. Perez-Prieto, J. Am. Chem. Soc. 2014, 136, 850.
- 2Q. Akkerman, V. D'Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276.
- 3P. Tyagi, S. Arveson, W. Tisdale, J. Phys. Chem. Lett. 2015, 6, 1911.
- 4D. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 2016, 351, 151
- 5Q. Li, L. Yin, Z. Chen, K. Deng, S. Luo, B. Zou, Z. Wang, J. Tang, Z. Quan, Inorg. Chem. 2019, 58, 1621–1626.
- 6Y. Park, S. Guo, N. Makarov, V. Klimov, ACS Nano 2015, 9, 10386.
- 7Q. Li, Y. Wang, W. Pan, W. Yang, B. Zou, J. Tang, Z. Quan, Angew. Chem. Int. Ed. 2017, 56, 15969; Angew. Chem. 2017, 129, 16185.
- 8B. Han, B. Cai, Q. Shan, J. Song, J. Li, F. Zhang, J. Chen, T. Fang, Q. Ji, X. Xu, H. Zeng, Adv. Funct. Mater. 2018, 28, 1804285.
- 9J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1800764.
- 10G. Nedelcu, L. Protesescu, S. Yakunin, M. Bodnarchuk, M. Grotevent, M. Kovalenko, Nano Lett. 2015, 15, 5635.
- 11K. Zheng, K. Zidek, M. Abdellah, M. Messing, M. Al-Marri, T. Pullerits, J. Phys. Chem. C 2016, 120, 3077.
- 12A. Swarnkar, R. Chulliyil, V. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Angew. Chem. Int. Ed. 2015, 54, 15424; Angew. Chem. 2015, 127, 15644.
- 13F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 2015, 9, 4533.
- 14J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. Martins, I. Driessche, M. Kovalenko, Z. Hens, ACS Nano 2016, 10, 2071.
- 15N. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. Klimov, Nano Lett. 2016, 16, 2349.
- 16S. Yakunin, L. Protesescu, F. Krieg, M. Bodnarchuk, G. Nedelcu, M. Humer, G. Luca, M. Fiebig, W. Heiss, M. Kovalenko, Nat. Commun. 2015, 6, 8056.
- 17Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 2016, 138, 3761.
- 18H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. Gustafsson, M. Trinh, S. Jin, X. Zhu, Nat. Mater. 2015, 14, 636.
- 19X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct. Mater. 2016, 26, 2435.
- 20L. Serrano-Lujan, N. Espinosa, T. Larsen-Olsen, J. Abad, A. Urbina, F. Krebs, Adv. Energy Mater. 2015, 5, 1501119.
- 21G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 2015, 3, 8970.
- 22J. Chen, D. Liu, M. Al-Marri, L. Nuuttila, H. Lehtivuori, K. Zheng, Sci. China Mater. 2016, 59, 719.
- 23R. Zhang, X. Mao, Y. Yang, S. Yang, W. Zhao, T. Wumaier, D. Wei, W. Deng, K. Han, Angew. Chem. Int. Ed. 2019, 58, 272; Angew. Chem. 2019, 131, 2751.
- 24V. Belykh, D. Yakovlev, M. Glazov, P. Grigoryev, M. Hussain, J. Rautert, D. Dirin, M. Kovalenko, M. Bayer, Nat. Commun. 2019, 10, 673.
- 25G. Rainò, M. Becker, M. Bodnarchuk, R. Mahrt, M. Kovalenko, T. Stöferle, Nature 2018, 563, 671.
- 26D. Benin, D. Dirin, V. Morad, M. Worle, S. Yakunin, G. Raino, O. Nazarenko, M. Fischer, I. Infante, M. Kovalenko, Angew. Chem. Int. Ed. 2018, 57, 11329; Angew. Chem. 2018, 130, 11499.
- 27Y. Hassan, O. Ashton, J. Park, G. Li, N. Sakai, B. Wenger, A. Haghighirad, N. Noel, M. Song, B. Lee, R. Friend, H. Snaith, J. Am. Chem. Soc. 2019, 141, 1269.
- 28H. Almeida, O. Ashton, L. Goldoni, D. Maggioni, U. Petralanda, N. Mishra, Q. Akkerman, I. Infante, H. Snaith, L. Manna, J. Am. Chem. Soc. 2018, 140, 14878.
- 29Z. Yong, S. Guo, J. Ma, J. Zhang, Z. Li, Y. Chen, B. Zhang, Y. Zhou, J. Shu, J. Gu, L. Zheng, O. Bakr, H. Sun, J. Am. Chem. Soc. 2018, 140, 9942.
- 30B. Yang, J. Chen, S. Yang, F. Hong, L. Sun, P. Han, T. Pullerits, W. Deng, K. Han, Angew. Chem. Int. Ed. 2018, 57, 5359; Angew. Chem. 2018, 130, 5457.
- 31B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng, K. Han, Angew. Chem. Int. Ed. 2017, 56, 12471; Angew. Chem. 2017, 129, 12645.
- 32B. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, J. Am. Chem. Soc. 2018, 140, 17001.
- 33B. Yang, F. Hong, J. Chen, Y. Tang, L. Yang, Y. Sang, X. Xia, J. Guo, H. He, S. Yang, W. Deng, K. Han, Angew. Chem. Int. Ed. 2019, 58, 2278; Angew. Chem. 2019, 131, 2300.
- 34I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. Perea, F. Hoegl, G. Matt, R. Hock, M. Batentschuk, C. Brabec, Nano Lett. 2017, 17, 2765.
- 35J. Chen, M. Messing, K. Zheng, T. Pullerits, J. Am. Chem. Soc. 2019, 141, 3532.
- 36C. Zuo, L. Ding, Angew. Chem. Int. Ed. 2017, 56, 6528; Angew. Chem. 2017, 129, 6628.
- 37Z. Zhou, S. Pang, F. Ji, B. Zhang, G. Cui, Chem. Commun. 2016, 52, 3828.
- 38H. Si, Q. Liao, Z. Kang, Yang. Ou, J. Meng, Y. Liu, Z. Zheng, Y. Zhang, Adv. Funct. Mater. 2017, 27, 1701804.
- 39M. Filip, C. Verdi, F. Giustino, J. Phys. Chem. C 2015, 119, 25209.
- 40W. Huang, J. Manser, S. Sadhu, P. Kamat, S. Ptasinska, J. Phys. Chem. Lett. 2016, 7, 5068.
- 41D. Amgar, T. Binyamin, V. Uvarov, L. Etgar, Nanoscale 2018, 10, 6060.
- 42Y. Zong, Y. Zhou, M. Ju, F. Garces, A. Krause, F. Ji, G. Cui, X. Zeng, N. Padture, S. Pang, Angew. Chem. Int. Ed. 2016, 55, 14723; Angew. Chem. 2016, 128, 14943.
- 43L. Wu, H. Hu, Y. Xu, S. Jiang, M. Chen, Q. Zhong, D. Yang, Q. Liu, Y. Zhao, B. Sun, Q. Zhang, Y. Yin, Nano Lett. 2017, 17, 5799.
- 44Q. Akkerman, E. Radicchi, S. Park, F. Nunzi, E. Mosconi, F. DeAngelis, R. Brescia, P. Rastogi, M. Prato, L. Manna, Nano Lett. 2017, 17, 1924.
- 45J. Sun, S. Huang, X. Liu, Q. Xu, Q. Zhang, W. Jiang, D. Xue, J. Xu, J. Ma, J. Ding, Q. Ge, L. Gu, X. Fang, H. Zhong, J. Hu, L. Wan, J. Am. Chem. Soc. 2018, 140, 11705.
- 46J. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. Sargent, J. Tang, Nature 2018, 7732, 541.
- 47J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan, H. Zeng, Adv. Mater. 2018, 30, 1805409.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.