Lithium Bond Chemistry in Lithium–Sulfur Batteries
Ting-Zheng Hou
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
University of California Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorWen-Tao Xu
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
University of California Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorXiang Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHong-Jie Peng
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Jia-Qi Huang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorTing-Zheng Hou
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
University of California Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorWen-Tao Xu
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
University of California Berkeley, Berkeley, CA, 94720 USA
These authors contributed equally to this work.
Search for more papers by this authorXiang Chen
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
These authors contributed equally to this work.
Search for more papers by this authorHong-Jie Peng
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorProf. Jia-Qi Huang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorCorresponding Author
Prof. Qiang Zhang
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 P.R. China
Search for more papers by this authorAbstract
The lithium–sulfur (Li–S) battery is a promising high-energy-density storage system. The strong anchoring of intermediates is widely accepted to retard the shuttle of polysulfides in a working battery. However, the understanding of the intrinsic chemistry is still deficient. Inspired by the concept of hydrogen bond, herein we focus on the Li bond chemistry in Li–S batteries through sophisticated quantum chemical calculations, in combination with 7Li nuclear magnetic resonance (NMR) spectroscopy. Identified as Li bond, the strong dipole–dipole interaction between Li polysulfides and Li–S cathode materials originates from the electron-rich donors (e.g., pyridinic nitrogen (pN)), and is enhanced by the inductive and conjugative effect of scaffold materials with π-electrons (e.g., graphene). The chemical shift of Li polysulfides in 7Li NMR spectroscopy, being both theoretically predicted and experimentally verified, is suggested to serve as a quantitative descriptor of Li bond strength. These theoretical insights were further proved by actual electrochemical tests. This work highlights the importance of Li bond chemistry in Li–S cell and provides a deep comprehension, which is helpful to the cathode materials rational design and practical applications of Li–S batteries.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201704324-sup-0001-misc_information.pdf239.7 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1N.-S. Choi, Z. Chen, S.-A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L.-F. Nazar, J. Cho, P.-G. Bruce, Angew. Chem. Int. Ed. 2012, 51, 9994–10024; Angew. Chem. 2012, 124, 10134–10166; Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Angew. Chem. Int. Ed. 2013, 52, 13186–13200; Angew. Chem. 2013, 125, 13426–13441.
- 2A. Manthiram, Y. Fu, Y.-S. Su, Acc. Chem. Res. 2013, 46, 1125–1134.
- 3P.-G. Bruce, S.-A. Freunberger, L.-J. Hardwick, J.-M. Tarascon, Nat. Mater. 2012, 11, 19–29; A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F.-F. Chesneau, Adv. Energy Mater. 2015, 5, 1500212; H.-J. Peng, X.-B. Cheng, J.-Q. Huang, Q. Zhang, Adv. Energy Mater. 2017, 7, 1700260; X. Liu, J.-Q. Huang, Q. Zhang, L.-Q. Mai, Adv. Mater. 2017, 29, 1601759; A. Manthiram, S.-H. Chung, C. Zu, Adv. Mater. 2015, 27, 1980–2006; Z.-W. Seh, Y.-M. Sun, Q.-F. Zhang, Y. Cui, Chem. Soc. Rev. 2016, 45, 5605–5634; J.-Q. Huang, Q. Zhang, F. Wei, Energy Storage Mater. 2015, 1, 127–145; J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng, Energy Storage Mater. 2016, 2, 76–106.
- 4X. Ji, S. Evers, R. Black, L.-F. Nazar, Nat. Commun. 2011, 2, 325.
- 5N. Jayaprakash, J. Shen, S.-S. Moganty, A. Corona, L.-A. Archer, Angew. Chem. Int. Ed. 2011, 50, 5904–5908; Angew. Chem. 2011, 123, 6026–6030; Y.-S. Su, A. Manthiram, Nat. Commun. 2012, 3, 1166; H.-J. Peng, J. Liang, L. Zhu, J.-Q. Huang, X.-B. Cheng, X. Guo, W. Ding, W. Zhu, Q. Zhang, ACS Nano 2014, 8, 11280–11289; G. Zhou, S. Pei, L. Li, D.-W. Wang, S. Wang, K. Huang, L.-C. Yin, F. Li, H.-M. Cheng, Adv. Mater. 2014, 26, 625–631.
- 6C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100–6105; L. Ma, H.-L. Zhuang, S.-Y. Wei, K.-E. Hendrickson, M.-S. Kim, G. Cohn, R.-G. Hennig, L.-A. Archer, ACS Nano 2016, 10, 1050–1059; L. Ma, H.-L. Zhuang, Y.-Y. Lu, S.-S. Moganty, R.-G. Hennig, L.-A. Archer, Adv. Energy Mater. 2014, 4, 1400390; J.-X. Song, T. Xu, M.-L. Gordin, P.-Y. Zhu, D.-P. Lv, Y.-B. Jiang, Y.-S. Chen, Y.-H. Duan, D.-H. Wang, Adv. Funct. Mater. 2014, 24, 1243–1250; J. Song, M.-L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Angew. Chem. Int. Ed. 2015, 54, 4325–4329; Angew. Chem. 2015, 127, 4399–4403; B.-P. Vinayan, T. Diemant, X.-M. Lin, M.-A. Cambaz, U. Golla-Schindler, U. Kaiser, R. Jürgen-Behm, M. Fichtner, Adv. Mater. Interfaces 2016, 3, 1600372; Y.-L. Ding, P. Kopold, K. Hahn, P.-A. van Aken, J. Maier, Y. Yu, Adv. Funct. Mater. 2016, 26, 1112–1119.
- 7T.-Z. Hou, H.-J. Peng, J.-Q. Huang, Q. Zhang, B. Li, 2D Mater. 2015, 2, 014011.
- 8T.-Z. Hou, X. Chen, H.-J. Peng, J.-Q. Huang, B.-Q. Li, Q. Zhang, B. Li, Small 2016, 12, 3283–3291.
- 9Q. Zhang, Y. Wang, Z.-W. Seh, Z. Fu, R. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780–3786; X.-Y. Tao, J.-G. Wang, C. Liu, H.-T. Wang, H.-B. Yao, G.-Y. Zheng, Z.-W. Seh, Q.-X. Cai, W.-Y. Li, G.-M. Zhou, Nat. Commun. 2016, 7, 11203; Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen, D.-W. Wang, X.-B. Cheng, F. Wei, Q. Zhang, Nano Lett. 2016, 16, 519–527; G. Zhou, H. Tian, Y. Jin, X. Tao, B. Liu, R. Zhang, Z.-W. Seh, D. Zhuo, Y. Liu, J. Sun, J. Zhao, C. Zu, D.-S. Wu, Q. Zhang, Y. Cui, Proc. Natl. Acad. Sci. USA 2017, 114, 840–845; X. Chen, H.-J. Peng, R. Zhang, T.-Z. Hou, J.-Q. Huang, B. Li, Q. Zhang, ACS Energy Lett. 2017, 2, 795–801.
- 10L.-C. Yin, J. Liang, G.-M. Zhou, F. Li, R. Saito, H.-M. Cheng, Nano Energy 2016, 25, 203–210.
- 11H.-J. Peng, G. Zhang, X. Chen, Z.-W. Zhang, W. T. Xu, J.-Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2016, 55, 12990–12995; Angew. Chem. 2016, 128, 13184–13189.
- 12K. Park, J. H. Cho, J.-H. Jang, B.-C. Yu, A.-T. De La Hoz, K.-M. Miller, C.-J. Ellison, J.-B. Goodenough, Energy Environ. Sci. 2015, 8, 2389–2395; K.-C. Kim, T. Liu, S.-W. Lee, S.-S. Jang, J. Am. Chem. Soc. 2016, 138, 2374–2382; K.-M. Liao, P. Mao, N. Li, M. Han, J. Yi, P. He, Y. Sun, H.-S. Zhou, J. Mater. Chem. A 2016, 4, 5406–5409.
- 13D.-N. Shigorin, Spectrochim. Acta 1959, 14, 198–212.
- 14A.-B. Sannigrahi, T. Kar, B.-G. Niyogi, P. Hobza, P.-V. Schleyer, Chem. Rev. 1990, 90, 1061–1076.
- 15H.-J. Beister, S. Haag, R. Kniep, K. Strössner, K. Syassen, Angew. Chem. Int. Ed. Engl. 1988, 27, 1101–1103; Angew. Chem. 1988, 100, 1116–1118.
- 16L. Pauling, The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry, Vol. 18, Cornell University press, 1960.
- 17F. Cordier, M. Rogowski, S. Grzesiek, A. Bax, J. Magn. Reson. 1999, 140, 510–512.
- 18R. Bhattacharyya, B. Key, H. Chen, A.-S. Best, A.-F. Hollenkamp, C.-P. Grey, Nat. Mater. 2010, 9, 504–510; N.-M. Trease, T.-K.-J. Köster, C.-P. Grey, Electrochem. Soc. Interface 2011, 20, 69–73; S. Chandrashekar, N.-M. Trease, H.-J. Chang, L.-S. Du, C.-P. Grey, A. Jerschow, Nat. Mater. 2012, 11, 311–315.
- 19J. Xiao, J.-Z. Hu, H. Chen, M. Vijayakumar, J. Zheng, H. Pan, E.-D. Walter, M. Hu, X. Deng, J. Feng, B.-Y. Liaw, M. Gu, Z.-D. Deng, D. Lu, S. Xu, C. Wang, J. Liu, Nano Lett. 2015, 15, 3309–3316.
- 20H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227; J. Zhang, H. Hu, Z. Li, X.-W. Lou, Angew. Chem. Int. Ed. 2016, 55, 3982–3986; Angew. Chem. 2016, 128, 4050–4054.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.