From Extended Nanofluidics to an Autonomous Solar-Light-Driven Micro Fuel-Cell Device
Corresponding Author
Dr. Yuriy Pihosh
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorJin Uemura
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Ivan Turkevych
National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 2–13, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorDr. Kazuma Mawatari
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Yutaka Kazoe
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Adelina Smirnova
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorCorresponding Author
Prof. Takehiko Kitamori
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorCorresponding Author
Dr. Yuriy Pihosh
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorJin Uemura
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Ivan Turkevych
National Institute of Advanced Industrial Science and Technology (AIST), AIST Central 2–13, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorDr. Kazuma Mawatari
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Yutaka Kazoe
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorDr. Adelina Smirnova
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorCorresponding Author
Prof. Takehiko Kitamori
Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656 Japan
Search for more papers by this authorAbstract
Autonomous micro/nano mechanical, chemical, and biomedical sensors require persistent power sources scaled to their size. Realization of autonomous micro-power sources is a challenging task, as it requires combination of wireless energy supply, conversion, storage, and delivery to the sensor. Herein, we realized a solar-light-driven power source that consists of a micro fuel cell (μFC) and a photocatalytic micro fuel generator (μFG) integrated on a single microfluidic chip. The μFG produces hydrogen by photocatalytic water splitting under solar light. The hydrogen fuel is then consumed by the μFC to generate electricity. Importantly, the by-product water returns back to the photocatalytic μFG via recirculation loop without losses. Both devices rely on novel phenomena in extended-nano-fluidic channels that ensure ultra-fast proton transport. As a proof of concept, we demonstrate that μFG/μFC source achieves remarkable energy density of ca. 17.2 mWh cm−2 at room temperature.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201703227-sup-0001-misc_information.pdf15.1 MB | Supplementary |
ange201703227-sup-0001-video_S1.mp49.8 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chalasani, J. M. Conrad, in IEEE, 2008, pp. 442–447.
- 2A. S. Weddell, M. Magno, G. V Merrett, D. Brunelli, B. M. Al-hashimi, L. Benini, in EDAA, 2013, pp. 905–908.
- 3G. Zhou, L. Huang, W. Li, Z. Zhu, J. Sensors 2014, 2014, 815467.
- 4A. M. B. Dziadak, Ł. Makowski, A. Michalski, Metrol. Meas. Syst. 2016, 23, 495–512.
- 5P. N. Nge, C. I. Rogers, A. T. Woolley, Chem. Rev. 2013, 113, 2550–2583.
- 6M. A. Modestino, D. F. Rivas, S. M. H. Hashemi, J. G. E. Gardeniers, D. Psaltis, Energy Environ. Sci. 2016, 9, 3381–3391.
- 7M. Safdar, J. Jänis, S. Sánchez, Lab Chip 2016, 16, 2754–2758.
- 8K.-B. Min, S. Tanaka, M. Esashi, J. Micromech. Microeng. 2006, 16, 505–511.
- 9Y. Zhang, J. Lu, H. Zhou, T. Itoh, R. Maeda, J. Microelectromech. Syst. 2008, 17, 1020–1028.
- 10K. Shah, W. C. Shin, R. S. Besser, J. Power Sources 2003, 123, 172–181.
- 11H. C. Peng, C. N. Wang, T. K. Yeh, Y. C. Su, C. Pan, F. G. Tseng, J. Power Sources 2013, 225, 277–285.
- 12K. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535–4585.
- 13K. Chae, M. Choi, F. Ajayi, W. Park, Energy Fuels 2008, 22, 169–176.
- 14R. A. Rozendal, H. V. M. Hamelers, C. J. N. Buisman, Environ. Sci. Technol. 2006, 40, 5206–5211.
- 15A. Hibara, T. Saito, H. B. Kim, M. Tokeshi, T. Ooi, M. Nakao, T. Kitamori, Anal. Chem. 2002, 74, 6170–6176.
- 16T. Tsukahara, A. Hibara, Y. Ikeda, T. Kitamori, Angew. Chem. Int. Ed. 2007, 46, 1180–1183; Angew. Chem. 2007, 119, 1199–1202.
- 17H. Chinen, K. Mawatari, Y. Pihosh, K. Morikawa, Y. Kazoe, T. Tsukahara, T. Kitamori, Angew. Chem. Int. Ed. 2012, 51, 3573–3577; Angew. Chem. 2012, 124, 3633–3637.
- 18S. P. P. Velayutham, A. K. Sahu, S. Parthasarathy, Energies 2017, 10, 1–13.
- 19A. Hibara, S. Iwayama, S. Matsuoka, M. Ueno, Y. Kikutani, M. Tokeshi, T. Kitamori, Anal. Chem. 2005, 77, 943–947.
- 20Y. Xu, C. Wang, Y. Dong, L. Li, K. Jang, K. Mawatari, T. Suga, T. Kitamori, Anal. Bioanal. Chem. 2012, 402, 1011–1018.
- 21Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita, T. Sugaya, T. Matsui, D. Fujita, et al., Sci. Rep. 2015, 5, 11141.
- 22Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota, K. Domen, et al., Small 2014, 10, 3692–3699.
- 23O. T. Holton, J. W. Stevenson, Platinum Met. Rev. 2013, 57, 259–271.
- 24S. Pujiastuti, H. Onggo, in AIP Conf. Proc., AIP Publisher, 2016, pp. 60006-1-6.
- 25J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, D. Yang, J. Qiao, J. Ma, J. Power Sources 2010, 195, 1171–1176.
- 26B. C. H. Steele, A. Heinzel, Nature 2001, 414, 345–352.
- 27Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, et al., J. Mater. Res. 2010, 25, 3–16.
- 28“NREL: Dynamic Maps, GIS Data, and Analysis Tools—Solar Maps,” can be found under http://www.nrel.gov/gis/solar.html.
- 29“Comparing Low-Power Wireless Technologies | DigiKey,” can be found under http://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.