Inducing Complexity in Intermetallics through Electron–Hole Matching: The Structure of Fe14Pd17Al69
Gordon G. C. Peterson
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorDr. Vincent J. Yannello
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorCorresponding Author
Prof. Daniel C. Fredrickson
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorGordon G. C. Peterson
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorDr. Vincent J. Yannello
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorCorresponding Author
Prof. Daniel C. Fredrickson
Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 USA
Search for more papers by this authorAbstract
We illustrate how the crystal structure of Fe14Pd17Al69 provides an example of an electron–hole matching approach to inducing frustration in intermetallic systems. Its structure contains a framework based on IrAl2.75, a binary compound that closely adheres to the 18−n rule. Upon substituting the Ir with a mixture of Fe and Pd, a competition arises between maintaining the overall ideal electron concentration and accommodating the different structural preferences of the two elements. A 2×2×2 supercell results, with Pd- and Fe-rich regions emerging. Just as in the original IrAl2.75 phase, the electronic structure of Fe14Pd17Al69 exhibits a pseudogap at the Fermi energy arising from an 18−n bonding scheme. The electron–hole matching approach's ability to combine structural complexity with electronic pseudogaps offers an avenue to new phonon glass–electron crystal materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201702156-sup-0001-misc_information.pdf15 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. A. Slack in Thermoelectric Handbook (Ed.: ), CRC, Boca Raton, FL, 1995, pp. 407–440.
- 2G. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105–114.
- 3D. C. Schmitt, N. Haldolaarachchige, Y. Xiong, D. P. Young, R. Jin, J. Y. Chan, J. Am. Chem. Soc. 2012, 134, 5965–5973.
- 4
- 4aD. C. Fredrickson, S. Lee, R. Hoffmann, Angew. Chem. Int. Ed. 2007, 46, 1958–1976; Angew. Chem. 2007, 119, 2004–2023;
- 4bD. C. Fredrickson, S. Lee, R. Hoffmann, Angew. Chem. 2007, 119, 2004–2023.
10.1002/ange.200601678 Google Scholar
- 5M. Conrad, B. Harbrecht, T. Weber, D. Y. Jung, W. Steurer, Acta Crystallogr. Sect. B 2009, 65, 318–325.
- 6A. B. Hadler, N. A. Harris, D. C. Fredrickson, J. Am. Chem. Soc. 2013, 135, 17369–17378.
- 7R. T. Fredrickson, Y. Guo, D. C. Fredrickson, J. Am. Chem. Soc. 2016, 138, 248–256.
- 8Y. Guo, D. C. Fredrickson, Inorg. Chem. 2016, 55, 10397–10405.
- 9R. Nesper, Z. Anorg. Allg. Chem. 2014, 640, 2639–2648.
- 10R. F. Berger, P. L. Walters, S. Lee, R. Hoffmann, Chem. Rev. 2011, 111, 4522–4545.
- 11
- 11aV. J. Yannello, D. C. Fredrickson, Inorg. Chem. 2014, 53, 10627–10631;
- 11bB. J. Kilduff, V. J. Yannello, D. C. Fredrickson, Inorg. Chem. 2015, 54, 8103–8110;
- 11cV. J. Yannello, D. C. Fredrickson, Inorg. Chem. 2015, 54, 11385–11398; For alternative statement of this rule based on clusters rather than transition metal centers see:
- 11dK. Kitahara, Y. Takagiwa, K. Kimura, J. Phys. Soc. Jpn. 2015, 84, 104703.
- 12G. Brauer, Z. Anorg. Allg. Chem. 1939, 242, 1–22.
- 13K. Becker, F. Ebert, Z. Phys. 1923, 16, 165–169.
- 14
- 14aJ. J. Ding, P. Rogl, H. Schmidt, J. Alloys Compd. 2001, 317–318, 379–384;
- 14bA. U. Khan, J. Bursik, A. Grytsiv, V. Pomjakushin, H. Effenberger, P. Rogl, Intermetallics 2011, 19, 1340–1347.
- 15
- 15aS. Balanetskyy, B. Grushko, T. Y. Velikanova, K. Urban, J. Alloys Compd. 2004, 376, 158–164;
- 15bS. Balanetskyy, B. Grushko, E. Kowalska-Strzęciwilk, T. Y. Velikanova, K. Urban, J. Alloys Compd. 2004, 364, 164–170;
- 15cS. Balanetskyy, B. Grushko, T. Y. Velikanova, K. Urban, J. Alloys Compd. 2004, 368, 169–174;
- 15dS. Balanetskyy, T. Y. Velikanova, B. Grushko, J. Alloys Compd. 2005, 394, 219–225.
- 16K. Sugiyama, K. Hiraga, K. Saito, Mater. Sci. Eng. A 2000, 294–296, 345–347.
- 17L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.
- 18V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. 2014, 229, 345–352.
- 19
- 19aY. Grin, K. Peters, U. Burkhardt, K. Gotzmann, M. Ellner, Z. Kristallogr. 1997, 212, 439–444;
- 19bF. J. Edler, V. Gramlich, W. Steurer, J. Alloys Compd. 1998, 269, 7–12;
- 19cS. Mahne, W. Steurer, Z. Kristallogr. 1996, 211, 17;
- 19dJ. Dshemuchadse, P. Kuczera, W. Steurer, Intermetallics 2013, 32, 337–343.
- 20M. Mihalkovič, C. L. Henley, Phys. Rev. B 2013, 88, 064201.
- 21D.-B. Xiong, N. L. Okamoto, H. Inui, Inorg. Chem. 2011, 50, 827–835.
- 22GGA-DFT band energies and DOS distributions calculated with the Vienna Ab Initio Simulation Package (VASP). See:
- 22aG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169–11186;
- 22bG. Kresse, J. Furthmüller, Comput. Mater. Sci. 1996, 6, 15–50; and additional references in the SI. These results provided the basis for the refinement of simple Hückel models, on which the raMO analyses were carried out.
- 23V. J. Yannello, B. J. Kilduff, D. C. Fredrickson, Inorg. Chem. 2014, 53, 2730–2741.
- 24V. M. Berns, J. Engelkemier, Y. Guo, B. J. Kilduff, D. C. Fredrickson, J. Chem. Theory Comput. 2014, 10, 3380–3392.
- 25The DFT-chemical pressure analysis was performed on the output of LDA-DFT calculations made with ABINIT. See: X. Gonze, G.-m. Rignanese, M. Verstraete, J.-m. Beuken, Y. Pouillon, R. Caracas, J.-y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D. R. Hamann, D. C. Allan, Z. Kristallogr. 2005, 220, 558–562; and additional references in the SI.
- 26J. Engelkemier, D. C. Fredrickson, Chem. Mater. 2016, 28, 3171–3183.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.