Prediction of Extremely Strong Antiferromagnetic Superexchange in Silver(II) Fluorides: Challenging the Oxocuprates(II)
Corresponding Author
Dr. Dominik Kurzydłowski
Center of New Technologies, University of Warsaw, Banacha 2c, 02097 Warsaw, Poland
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, 01938 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Prof. Wojciech Grochala
Center of New Technologies, University of Warsaw, Banacha 2c, 02097 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Dr. Dominik Kurzydłowski
Center of New Technologies, University of Warsaw, Banacha 2c, 02097 Warsaw, Poland
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, 01938 Warsaw, Poland
Search for more papers by this authorCorresponding Author
Prof. Wojciech Grochala
Center of New Technologies, University of Warsaw, Banacha 2c, 02097 Warsaw, Poland
Search for more papers by this authorAbstract
Strong magnetic coupling between the spins of unpaired electrons is an essential ingredient of many fascinating physical phenomena. Here we report calculations using the hybrid HSE06 functional of magnetic superexchange constants, J, for a series of low-dimensional CuII and AgII binary and ternary systems with fluoride and oxide ligands. The calculations correctly reproduce the sign and size of the magnetic superexchange constants for prototypical antiferromagnetic (AFM) 1D (J1D) and 2D (J2D) systems, while overestimating the absolute values of J by about 11 %. We find that [AgF][BF4], a quasi-1D system with linear infinite [AgIIF+] chains, is predicted to exhibit an unprecedented strong AFM superexchange via one atom (F), with J1D about −300 meV. Compression of [AgF][BF4] to 10 GPa should lead to a further increase in AFM interactions with J1D reaching −360 meV at 10 GPa.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201700932-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. N. Leuenberger, D. Loss, Nature 2001, 410, 789–793.
- 2
- 2aA. Müller, P. Kögerler, A. W. M. Dress, Coord. Chem. Rev. 2001, 222, 193–218;
- 2bS. Hill, J. A. A. J. Perenboom, N. S. Dalal, T. Hathaway, T. Stalcup, J. S. Brooks, Phys. Rev. Lett. 1998, 80, 2453–2456.
- 3
- 3aK. S. Pedersen, M. A. Sørensen, J. Bendix, Coord. Chem. Rev. 2015, 299, 1–21;
- 3bB. Nowicka, T. Korzeniak, O. Stefańczyk, D. Pinkowicz, S. Chorąży, R. Podgajny, B. Sieklucka, Coord. Chem. Rev. 2012, 256, 1946–1971;
- 3cS. J. Blundell, Contemp. Phys. 2007, 48, 275–290.
- 4
- 4aJ. L. Manson, K. H. Stone, H. I. Southerland, T. Lancaster, A. J. Steele, S. J. Blundell, F. L. Pratt, P. J. Baker, R. D. McDonald, P. Sengupta, et al., J. Am. Chem. Soc. 2009, 131, 4590–4591;
- 4bJ. Tong, F. Kraus, J. Köhler, A. Simon, J. Liu, M. H. Whangbo, Z. Anorg. Allg. Chem. 2011, 637, 1118–1121;
- 4cF. H. Aidoudi, D. W. Aldous, R. J. Goff, A. M. Z. Slawin, J. P. Attfield, R. E. Morris, P. Lightfoot, Nat. Chem. 2011, 3, 801–806.
- 5
- 5aF. Neese, Coord. Chem. Rev. 2009, 253, 526–563;
- 5bJ.-P. Malrieu, R. Caballol, C. J. Calzado, C. de Graaf, N. Guihéry, Chem. Rev. 2014, 114, 429–492;
- 5cG. A. Landrum, R. Dronskowski, Angew. Chem. Int. Ed. 2000, 39, 1560–1585;
10.1002/(SICI)1521-3773(20000502)39:9<1560::AID-ANIE1560>3.0.CO;2-T CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 1598–1627.
- 6
- 6aD. J. Scalapino, Rev. Mod. Phys. 2012, 84, 1383–1417;
- 6bJ. P. Attfield, J. Mater. Chem. 2011, 21, 4756–4764;
- 6cA. Simon, Angew. Chem. Int. Ed. Engl. 1997, 36, 1788–1806; Angew. Chem. 1997, 109, 1873–1891.
- 7
- 7aM. Kastner, R. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys. 1998, 70, 897–928;
- 7bT. Kloss, X. Montiel, V. S. de Carvalho, H. Freire, C. Pépin, Rep. Prog. Phys. 2016, 79, 084507;
- 7cN. M. Plakida, Physica C 2016, 531, 39–59.
- 8
- 8aR. Coldea, S. M. Hayden, F. Aguado, T. G. Perring, C. D. Frost, T. E. Mason, S.-W. Cheong, Z. Fisk, Phys. Rev. Lett. 2001, 86, 5377–5380;
- 8bD. Vaknin, S. K. Sinha, C. Stassis, L. L. Miller, D. C. Johnston, Phys. Rev. B 1990, 41, 1926–1933.
- 9
- 9aA. C. Walters, T. G. Perring, J.-S. Caux, A. T. Savici, G. D. Gu, C.-C. Lee, W. Ku, I. A. Zaliznyak, Nat. Phys. 2009, 5, 867–872;
- 9bJ. Lorenzana, R. Eder, Phys. Rev. B 1997, 55, R 3358–R3361.
- 10B. Lake, D. A. Tennant, S. E. Nagler, Phys. Rev. B 2005, 71, 134412.
- 11
- 11aW. Grochala, R. Hoffmann, Angew. Chem. Int. Ed. 2001, 40, 2742–2781;
10.1002/1521-3773(20010803)40:15<2742::AID-ANIE2742>3.0.CO;2-X CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2816–2859;
- 11bW. Grochala, Z. Mazej, Philos. Trans. R. Soc. London Ser. A 2015, 373, 20140179;
- 11cZ. Mazej, D. Kurzydłowski, W. Grochala, in Photonic and Electronic Properties of Fluoride Materials, Elsevier, Amsterdam, 2016, pp. 231–260.
10.1016/B978-0-12-801639-8.00012-X Google Scholar
- 12
- 12aW. Grochala, R. G. Egdell, P. P. Edwards, Z. Mazej, B. Žemva, ChemPhysChem 2003, 4, 997–1001;
- 12bT. Jaroń, W. Grochala, R. Hoffmann, Phys. Status Solidi RRL 2005, 242, R 1–R3;
- 12cJ. Romiszewski, W. Grochala, L. Z. Stolarczyk, J. Phys. Condens. Matter 2007, 19, 116206.
- 13D. Kurzydłowski, Z. Mazej, Z. Jagličić, Y. Filinchuk, W. Grochala, Chem. Commun. 2013, 49, 6262–6264.
- 14
- 14aM. Leblanc, V. Maisonneuve, A. Tressaud, Chem. Rev. 2015, 115, 1191–1254;
- 14bL. Clark, P. Lightfoot in Photonic and Electronic Properties of Fluoride Materials, Elsevier, Amsterdam, 2016, pp. 261–284.
10.1016/B978-0-12-801639-8.00013-1 Google Scholar
- 15X. Zhang, G. Zhang, T. Jia, Y. Guo, Z. Zeng, H. Q. Lin, Phys. Lett. A 2011, 375, 2456–2459.
- 16K. Yvon, A. Bezinge, P. Tissot, P. Fischer, J. Solid State Chem. 1986, 65, 225–230.
- 17
- 17aT. Shimizu, T. Matsumoto, A. Goto, T. V. Chandrasekhar Rao, K. Yoshimura, K. Kosuge, Phys. Rev. B 2003, 68, 224433;
- 17bX. Rocquefelte, K. Schwarz, P. Blaha, Sci. Rep. 2012, 2, 759.
- 18A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 224106.
- 19
- 19aP. Reinhardt, I. D. P. R. Moreira, C. de Graaf, R. Dovesi, F. Illas, Chem. Phys. Lett. 2000, 319, 625–630;
- 19bX. Feng, N. M. Harrison, Phys. Rev. B 2004, 70, 92402;
- 19cC. de Graaf, F. Illas, Phys. Rev. B 2000, 63, 14404; for a complete list of references see the Supporting Information.
- 20R.-H. Odenthal, R. Hoppe, Monatsh. Chem. 1971, 102, 1340–1350.
- 21W. J. Casteel, G. M. Lucier, R. Hagiwara, H. Borrmann, N. Bartlett, J. Solid State Chem. 1992, 96, 84–96.
- 22D. C. Johnston, R. K. Kremer, M. Troyer, X. Wang, A. Klümper, S. Bud'ko, A. Panchula, P. Canfield, Phys. Rev. B 2000, 61, 9558–9606.
- 23
- 23aJ. Kanamori, J. Phys. Chem. Solids 1959, 10, 87–98;
- 23bP. W. Anderson, Solid State Phys. 1963, 14, 99–214;
- 23cJ. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York, 1963;
- 23dP. J. Hay, J. C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 1975, 97, 4884–4899.
- 24
- 24aM. C. Aronson, S. B. Dierker, B. S. Dennis, S.-W. Cheong, Z. Fisk, Phys. Rev. B 1991, 44, 4657–4660;
- 24bV. V. Struzhkin, A. F. Goncharov, H. K. Mao, R. J. Hemley, S. W. Moore, J. M. Graybeal, J. Sarrao, Z. Fisk, Phys. Rev. B 2000, 62, 3895–3898.
- 25Note, J values being so immense, it is impossible to conduct fair studies of polymorphism in AgII/F systems from the first principles without taking magnetic ordering into account.
- 26J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 27
- 27aL. Noodleman, J. Chem. Phys. 1981, 74, 5737–5743;
- 27bD. Dai, M.-H. Whangbo, J. Chem. Phys. 2001, 114, 2887–2893;
- 27cF. Illas, I. D. P. R. Moreira, C. de Graaf, V. Barone, Theor. Chem. Acc. 2000, 104, 265–272.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.