Efficient Gene Transfection through Inhibition of β-Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles
Dr. Poulami Jana
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorDr. Krishnananda Samanta
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorSandra Bäcker
Institute for Biology, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorElio Zellermann
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorProf. Shirley Knauer
Institute for Biology, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten Schmuck
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorDr. Poulami Jana
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorDr. Krishnananda Samanta
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorSandra Bäcker
Institute for Biology, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorElio Zellermann
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorProf. Shirley Knauer
Institute for Biology, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten Schmuck
Institute for Organic Chemistry, University of Duisburg-Essen, 45117 Essen, Germany
Search for more papers by this authorAbstract
The effect of citrate-stabilized gold nanoparticles (AuNPs) on the secondary structure of an artificial β-sheet-forming cationic peptide has been studied. The AuNPs inhibited β-sheet formation and led to fragmented fibrils and spherical oligomers with assembled AuNPs on their surface. Besides this structural change, the functional properties of the peptide are also different. Whereas the peptide was unable to act as a vector for gene delivery, formation of a complex with AuNPs allowed successful gene delivery into cells.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201700713-sup-0001-misc_information.pdf7.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Shi, N. M. Bedford, H. S. Cho, Small 2011, 7, 2549–2567;
- 1bJ. V. Jokerst, S. S. Gambhir, Acc. Chem. Res. 2011, 44, 1050–1060;
- 1cX. Ma, Y. Zhao, X. J. Liang, Acc. Chem. Res. 2011, 44, 1114–1122;
- 1dY.-H. Liao, Y.-J. Chang, Y. Yoshiike, Y.-C. Chang, Y.-R. Chen, Small 2012, 8, 3631–3639.
- 2
- 2aI. Fenoglio, B. Fubini, E. M. Ghibaudi, F. Turci, Adv. Drug Delivery Rev. 2011, 63, 1186–1209;
- 2bH. Pan, M. Qin, W. Meng, Y. Cao, W. Wang, Langmuir 2012, 28, 12779–12787;
- 2cX. Wu, G. Narsimhan, Langmuir 2008, 24, 4989–4998;
- 2dC.-C. You, A. Verma, V. M. Rotello, Soft Matter 2006, 2, 190–204.
- 3
- 3aA. Hung, S. Mwenifumbo, M. Mager, J. J. Kuna, F. Stellacci, I. Yarovsky, M. M. Stevens, J. Am. Chem. Soc. 2011, 133, 1438–1450;
- 3bJ. Z. Deng, M. Liang, M. Monteiro, I. Toth, R. F. Minchin, Nat. Nanotechnol. 2011, 6, 39–44;
- 3cR. Cukalevski, M. Lundqvist, C. Oslakovic, B. Dahlback, S. Linse, T. Cedervall, Langmuir 2011, 27, 14360–14369.
- 4
- 4aC. Ge, J. Du, L. Zhao, L. Wang, Y. Liu, D. Li, Y. Yang, R. Zhou, Y. Zhao, Z. Chai, C. Chen, Proc. Natl. Acad. Sci. USA 2011, 108, 16968–16973;
- 4bA. A. Vertegel, R. W. Siegel, J. S. Dordick, Langmuir 2004, 20, 6800–6807;
- 4cG. Zuo, Q. Huang, G. Wei, R. Zhou, H. Fang, ACS Nano 2010, 4, 7508–7514.
- 5
- 5aT. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055;
- 5bH. T. Wiogo, M. Lim, V. Bulmus, L. Gutierrez, R. C. Woodward, R. Amal, Langmuir 2012, 28, 4346–4356.
- 6
- 6aB. L. Kier, I. Shu, L. A. Eidenschink, N. H. Andersen, Proc. Natl. Acad. Sci. USA 2010, 107, 10466–10471;
- 6bR. M. Hughes, M. L. Waters, Curr. Opin. Struct. Biol. 2006, 16, 514–524;
- 6cY.-H. Shin, D. E. Mortenson, K. A. Satyshur, K. T. Forest, S. H. Gellman, J. Am. Chem. Soc. 2013, 135, 8149–8152.
- 7
- 7aZ. Bu, D. J. E. Callaway, Adv. Protein Chem. Struct. Biol. 2011, 83, 163–221;
- 7bV. N. Uversky, A. K. Dunker, Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 1231–1264.
- 8
- 8aJ. S. Nowick, Acc. Chem. Res. 2008, 41, 1319–1330;
- 8bE. A. German, J. E. Ross, P. C. Knipe, M. F. Don, S. Thompson, A. D. Hamilton, Angew. Chem. Int. Ed. 2015, 54, 2649–2652; Angew. Chem. 2015, 127, 2687–2690;
- 8cR. L. Baldwin, G. D. Rose, Trends Biochem. Sci. 1999, 24, 26.
- 9
- 9aJ. Goni, F. J. Esteban, N. V. de Mendizabal, J. Sepulcre, S. A. Trevijano, I. Agirrezabal, P. Villoslada, BMC Syst. Biol. 2008, 2, 52;
- 9bJ. W. Kelly, Curr. Opin. Struct. Biol. 1996, 6, 11–17;
- 9cM. Stefanie, C. M. Dobson, J. Mol. Med. 2003, 81, 678–699.
- 10
- 10aS. Connelly, S. Choi, S. M. Johnson, J. W. Kelly, I. A. Wilson, Curr. Opin. Struct. Biol. 2010, 20, 54;
- 10bS. Choi, N. Reixach, S. Connelly, S. M. Johnson, I. A. Wilson, J. W. Kelly, J. Am. Chem. Soc. 2010, 132, 1359;
- 10cD. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E. E. Wanker, Nat. Struct. Mol. Biol. 2008, 15, 558;
- 10dC. Cabaleiro-Lago, F. Q. Pluck, I. Lynch, K. A. Dawson, S. Linse, ACS Chem. Neurosci. 2010, 1, 279;
- 10eJ. E. Kim, M. Lee, Biochem. Biophys. Res. Commun. 2003, 303, 576;
- 10fC. M. Cobley, J. Chen, E. C. Cho, L. V. Wang, Y. Xia, Chem. Soc. Rev. 2011, 40, 44.
- 11
- 11aC. Cabaleiro-Lago, F. Q. Pluck, I. Lynch, S. Lindman, A. M. Minogue, E. Thulin, D. M. Walsh, K. A. Dawson, S. Linse, J. Am. Chem. Soc. 2008, 130, 15437–15443;
- 11bP. C. Chen, S. C. Mwakwari, A. K. Oyelere, Nanotechnol. Sci. Appl. 2008, 1, 45–65.
- 12
- 12aM. Hu, J. Chen, Z.-Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, Y. Xia, Chem. Soc. Rev. 2006, 35, 1084–1094.
- 13P. Jana, M. Ehlers, E. Zellermann, K. Samanta, C. Schmuck, Angew. Chem. Int. Ed. 2016, 55, 15287–15291; Angew. Chem. 2016, 128, 15513—15517.
- 14
- 14aH. Y. Kuchelmeister, A. Gutschmidt, S. Tillmann, S. Knauer, C. Schmuck, Chem. Sci. 2012, 3, 996–1002;
- 14bK. Klemm, M. R. Stojković, G. Horvat, V. Tomišić, I. Piantanida, C. Schmuck, Chem. Eur. J. 2012, 18, 1352–1363;
- 14cC. Schmuck, L. Geiger, J. Am. Chem. Soc. 2005, 127, 10486–10487;
- 14dS. Niebling, S. K. Srivastava, C. Herrmann, P. R. Wich, C. Schmuck, S. Schlücker, Chem. Commun. 2010, 46, 2133–2135;
- 14eC. Schmuck, M. Schwegmann, J. Am. Chem. Soc. 2005, 127, 3373–3379.
- 15
- 15aF. Milletti, Drug Discovery Today 2012, 17, 850–860;
- 15bI. Nakase, G. Tanaka, S. Futaki, Mol. BioSyst. 2013, 9, 855–861;
- 15cM. Lee, S. W. Kim, in Polymeric gene delivery: principles and applications, Vol. 1 (Ed.: ), CRC Press, Boston, 2005, pp. 79–95;
- 15dS. Futaki, Int. J. Pharm. 2002, 245, 1–7.
- 16
- 16aP. A. Wender, D. J. Mitchell, K. Pattabiraman, E. T. Pelkey, L. Steinman, J. B. Rothbard, Proc. Natl. Acad. Sci. USA 2000, 97, 13003–13008;
- 16bS. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura, J. Biol. Chem. 2001, 276, 5836–5840;
- 16cH. Margus, K. Padari, M. Pooga, Mol. Ther. 2012, 20, 525–533;
- 16dF. S. Hassane, A. F. Saleh, R. Abes, M. J. Gait, B. Lebleu, Cell. Mol. Life Sci. 2010, 67, 715–726;
- 16eF. Heitz, M. C. Morris, G. Divita, Br. J. Pharmacol. 2009, 157, 195–206;
- 16fS. Futaki, W. Ohashi, T. Suzuki, M. Niwa, S. Tanaka, K. Ueda, H. Harashima, Y. Sugiura, Bioconjugate Chem. 2001, 12, 1005–1011.
- 17
- 17aN. Zheng, J. Fan, G. D. Stucky, J. Am. Chem. Soc. 2006, 128, 6550–6551;
- 17bK. R. Brown, D. G. Walter, M. J. Natan, Chem. Mater. 2000, 12, 306–313.
- 18D. Schöne, B. Schade, C. Böttcher, B. Koksch, Beilstein J. Org. Chem. 2015, 11, 792–803.
- 19
- 19aM. Biancalana, S. Koide, Biochim. Biophys. Acta Proteins Proteomics 2010, 1804, 1405.
- 20
- 20aM. Li, S. Schlesiger, S. K. Knauer, C. Schmuck, Angew. Chem. Int. Ed. 2015, 54, 2941–2944; Angew. Chem. 2015, 127, 2984–2987;
- 20bH. Y. Kuchelmeister, S. Karczewski, A. Gutschmidt, S. Knauer, C. Schmuck, Angew. Chem. Int. Ed. 2013, 52, 14016–14020; Angew. Chem. 2013, 125, 14266–14270.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.