Two Exceptional Homoleptic Iron(IV) Tetraalkyl Complexes
Dr. Alicia Casitas
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorDr. Julian A. Rees
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Richard Goddard
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorDr. Eckhard Bill
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorProf. Dr. Serena DeBeer
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorDr. Alicia Casitas
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorDr. Julian A. Rees
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Department of Chemistry, University of Washington, Box 351700, Seattle, WA, 98195-1700 USA
Search for more papers by this authorDr. Richard Goddard
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorDr. Eckhard Bill
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorProf. Dr. Serena DeBeer
Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853 USA
Search for more papers by this authorCorresponding Author
Prof. Alois Fürstner
Max-Planck-Institut für Kohlenforschung, 45470 Mülheim/Ruhr, Germany
Search for more papers by this authorAbstract
The formation of the high-valent iron complex [Fe(cyclohexyl)4] from FeII under reducing conditions is best explained by disproportionation of a transient organoiron intermediate which is driven by dispersive forces between the cyclohexyl ligands and the formation of short and strong Fe−C bonds. The (meta)stability of this diamagnetic complex (S=0) is striking if one considers that it has empty d-orbitals at its disposal and contains, at the same time, no less than twenty H-atoms available for either α- or β-hydride elimination.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201612299-sup-0001-misc_information.pdf1.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. Que, W. B. Tolman, Nature 2008, 455, 333–340.
- 2C. Krebs, D. Galonić Fujimori, C. T. Walsh, J. M. Bollinger, Acc. Chem. Res. 2007, 40, 484–492.
- 3J. F. Berry, S. DeBeer George, F. Neese, Phys. Chem. Chem. Phys. 2008, 10, 4361–4374.
- 4J. T. Groves, J. Inorg. Biochem. 2006, 100, 434–447.
- 5M. C. White, Science 2012, 335, 807–809.
- 6Though not strictly homoleptic, salts comprising [Cp*Fe]2+ are relevant in this context, see: M. Malischewski, M. Adelhardt, J. Sutter, K. Meyer, K. Seppelt, Science 2016, 353, 678–682.
- 7
- 7aT. Schlöder, T. Vent-Schmidt, S. Riedel, Angew. Chem. Int. Ed. 2012, 51, 12063–12067; Angew. Chem. 2012, 124, 12229–12233;
- 7bJ. V. Rau, S. Nunziante Cesaro, N. S. Chilingarov, M. S. Leskiv, G. Balducci, L. N. Sidorov, Inorg. Chem. Commun. 2003, 6, 643–645.
- 8R. A. Lewis, G. Wu, T. W. Hayton, J. Am. Chem. Soc. 2010, 132, 12814–12816.
- 9R. A. Lewis, D. E. Smiles, J. M. Darmon, S. C. E. Stieber, G. Wu, T. W. Hayton, Inorg. Chem. 2013, 52, 8218–8227.
- 10B. K. Bower, H. G. Tennent, J. Am. Chem. Soc. 1972, 94, 2512–2514.
- 11D. J. Liptrot, J.-D. Guo, S. Nagase, P. P. Power, Angew. Chem. Int. Ed. 2016, 55, 14766–14769; Angew. Chem. 2016, 128, 14986–14989.
- 12
- 12aE. K. Byrne, K. H. Theopold, J. Am. Chem. Soc. 1989, 111, 3887–3896;
- 12bH. B. Abrahamson, K. L. Brandenburg, B. Lucero, M. E. Martin, E. Dennis, Organometallics 1984, 3, 1379–1386;
- 12cC. R. Landis, T. Cleveland, T. K. Firman, J. Am. Chem. Soc. 1998, 120, 2641–2649; see also:
- 12dV. Dimitrov, A. Linden, Angew. Chem. Int. Ed. 2003, 42, 2631–2633; Angew. Chem. 2003, 115, 2735–2737.
- 13For pioneering studies emphasizing the importance of dispersion forces in coordination chemistry, see:
- 13aS. Grimme, J.-P. Djukic, Inorg. Chem. 2010, 49, 2911–2919;
- 13bS. Grimme, J.-P. Djukic, Inorg. Chem. 2011, 50, 2619–2628;
- 13cC.-Y. Lin, J.-D. Guo, J. C. Fettinger, S. Nagase, F. Grandjean, G. J. Long, N. F. Chilton, P. P. Power, Inorg. Chem. 2013, 52, 13584–13593.
- 14For an example in which dispersion forces are though to drive disproportionation, see: C. L. Wagner, L. Tao, E. J. Thompson, T. A. Stich, J. Guo, J. C. Fettinger, L. A. Berben, R. D. Britt, S. Nagase, P. P. Power, Angew. Chem. Int. Ed. 2016, 55, 10444–10447; Angew. Chem. 2016, 128, 10600–10603.
- 15
- 15aJ. P. Wagner, P. R. Schreiner, Angew. Chem. Int. Ed. 2015, 54, 12274–12296; Angew. Chem. 2015, 127, 12446–12471;
- 15bD. J. Liptrot, P. P. Power, Nat. Rev. Chem. 2017, 1, 0004.
- 16
- 16aA. Fürstner, ACS Cent. Sci. 2016, 2, 778–789;
- 16bI. Bauer, H.-J. Knölker, Chem. Rev. 2015, 115, 3170–3387.
- 17B. D. Sherry, A. Fürstner, Acc. Chem. Res. 2008, 41, 1500–1511.
- 18
- 18aA. Fürstner, A. Leitner, M. Méndez, H. Krause, J. Am. Chem. Soc. 2002, 124, 13856–13863;
- 18bA. Fürstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 8773–8787;
- 18cB. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem. 2004, 69, 3943–3949;
- 18dA. Fürstner, H. Krause, C. W. Lehmann, Angew. Chem. Int. Ed. 2006, 45, 440–444; Angew. Chem. 2006, 118, 454–458;
- 18eC.-L. Sun, A. Fürstner, Angew. Chem. Int. Ed. 2013, 52, 13071–13075; Angew. Chem. 2013, 125, 13309–13313;
- 18fD. J. Tindall, H. Krause, A. Fürstner, Adv. Synth. Catal. 2016, 358, 2398–2403.
- 19
- 19aP.-G. Echeverria, A. Fürstner, Angew. Chem. Int. Ed. 2016, 55, 11188–11192; Angew. Chem. 2016, 128, 11354–11358;
- 19bA. Fürstner, K. Majima, R. Martín, H. Krause, E. Kattnig, R. Goddard, C. W. Lehmann, J. Am. Chem. Soc. 2008, 130, 1992–2004;
- 19cA. Fürstner, M. Méndez, Angew. Chem. Int. Ed. 2003, 42, 5355–5357; Angew. Chem. 2003, 115, 5513–5515.
- 20B. Bogdanović, M. Schwickardi, Angew. Chem. Int. Ed. 2000, 39, 4610–4612;
10.1002/1521-3773(20001215)39:24<4610::AID-ANIE4610>3.0.CO;2-O CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 4788–4790.
- 21
- 21aR. R. Schrock, G. W. Parshall, Chem. Rev. 1976, 76, 243–268;
- 21bP. J. Davidson, M. F. Lappert, R. Pearce, Chem. Rev. 1976, 76, 219–242.
- 22Cyclohexyl complexes are scarce but those of Os, Ru, Cr and Ti have been characterized, see:
- 22aP. Stavropoulos, P. D. Savage, R. P. Tooze, G. Wilkinson, B. Hussain, M. Motevalli, M. B. Hursthouse, J. Chem. Soc. Dalton Trans. 1987, 557–562;
- 22bR. P. Tooze, P. Stavropoulos, M. Motevalli, M. B. Hursthouse, G. Wilkinson, J. Chem. Soc. Chem. Commun. 1985, 1139–1140;
- 22cJ.-B. Weber, J. Porret, A. Jacot-Guillarmod, Helv. Chim. Acta 1978, 61, 2949–2955;
- 22dE. M. Meier, A. Jacot-Guillarmod, Helv. Chim. Acta 1985, 68, 1698–1703.
- 23A. Casitas, H. Krause, R. Goddard, A. Fürstner, Angew. Chem. Int. Ed. 2015, 54, 1521–1526; Angew. Chem. 2015, 127, 1541–1546.
- 24For homoleptic M(adamantyl)4 (M=Ti, Cr), see: M. Bochmann, G. Wilkinson, G. B. Young, J. Chem. Soc. Dalton Trans. 1980, 1879–1887.
- 25Samples enriched in an intermediate formed from FeCl2 and 2-adamantyllithium (2 equiv) at −78 °C were obtained, but single crystals suitable for X-ray diffraction could not be grown; the Mössbauer data (δ=0.32 mm s−1, ΔEQ=1.27 mm s−1) suggest it might be [Fe(2-adamantyl)2]. For dicoordinate 10-electron FeII complexes, see:
- 25aW. M. Reiff, A. M. LaPointe, E. H. Witten, J. Am. Chem. Soc. 2004, 126, 10206–10207;
- 25bA. M. LaPointe, Inorg. Chim. Acta 2003, 345, 359–362;
- 25cT. Viefhaus, K. Schwarz, K. Hübler, K. Locke, J. Weidlein, Z. Anorg. Allg. Chem. 2001, 627, 715–725;
- 25dD. L. Kays née Coombs, A. R. Cowley, Chem. Commun. 2007, 1053–1055;
- 25eH. Müller, W. Seidel, H. Görls, Angew. Chem. Int. Ed. Engl. 1995, 34, 325–327; Angew. Chem. 1995, 107, 386–387;
- 25fM. M. Olmstead, P. P. Power, S. C. Shoner, Inorg. Chem. 1991, 30, 2547–2551.
- 26The deviation from the ideal geometry is manifest in the disparity between the largest (116°) and the smallest (106°) C-Fe-C angles.
- 27
- 27aM. Brookhart, M. L. H. Green, G. Parkin, Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914;
- 27bM. Brookhart, M. L. H. Green, L. L. Wong, Prog. Inorg. Chem. 1988, 36, 1–124;
- 27cM. Brookhart, M. L. H. Green, J. Organomet. Chem. 1983, 250, 395–408.
- 28See also: R. J. Goddard, R. Hoffmann, E. D. Jemmis, J. Am. Chem. Soc. 1980, 102, 7667–7676.
- 29A. Karipides, Inorg. Chem. 1978, 17, 2604–2607.
- 30For leading references on heteroleptic low-spin FeIV complexes, see the following and references therein:
- 30aE. A. Páez, W. T. Oosterhuis, D. L. Weaver, J. Chem. Soc. D 1970, 506–507;
- 30bC. C. Cummins, R. R. Schrock, Inorg. Chem. 1994, 33, 395–396;
- 30cM. P. Hendrich, W. Gunderson, R. K. Behan, M. T. Green, M. P. Mehn, T. A. Betley, C. C. Lu, J. C. Peters, Proc. Natl. Acad. Sci. USA 2006, 103, 17107–17112;
- 30dE. J. Klinker, T. A. Jackson, M. P. Jensen, A. Stubna, G. Juhász, E. L. Bominaar, E. Münck, L. Que, Angew. Chem. Int. Ed. 2006, 45, 7394–7397; Angew. Chem. 2006, 118, 7554–7557;
- 30eI. Nieto, F. Ding, R. P. Bontchev, H. Wang, J. M. Smith, J. Am. Chem. Soc. 2008, 130, 2716–2717;
- 30fB. M. Lindley, A. Swidan, E. B. Lobkovsky, P. T. Wolczanski, M. Adelhardt, J. Sutter, K. Mayer, Chem. Sci. 2015, 6, 4730–4736;
- 30gL. Wang, L. Hu, H. Zhang, H. Chen, L. Deng, J. Am. Chem. Soc. 2015, 137, 14196–14207.
- 31C. J. Pollock, S. DeBeer, Acc. Chem. Res. 2015, 48, 2967–2975.
- 32R. H. Crabtree, The Organometallic Chemistry of the Transition Metals, 4th ed., Wiley, Hoboken, 2005.
- 33For an assessment of the d-orbital energy splitting based on UV/Vis data and a comparison with TD-DFT computations, see the Supporting Information.
- 34For example, Figure 3 E illustrates the antibonding interactions between the torus of the
orbital and the α-H atoms.
- 35For a remarkable recent advance and a pertinent discussion, see: S. B. Muñoz, S. L. Daifuku, W. W. Brennessel, M. L. Neidig, J. Am. Chem. Soc. 2016, 138, 7492–7495.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.