Transformation of Dipeptide-Based Organogels into Chiral Crystals by Cryogenic Treatment
Dr. Xingcen Liu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jinbo Fei
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Anhe Wang
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Wei Cui
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Pengli Zhu
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Xingcen Liu
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Jinbo Fei
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Anhe Wang
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Wei Cui
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorDr. Pengli Zhu
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Junbai Li
Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Controlled molecular assembly is an important approach for the synthesis of single-component materials with diverse functions. Unlike traditional heat treatment or solvent modulation, cryogenic treatment at 77 K enabled the tunable transition of a self-assembled diphenylalanine organogel into a hexagonal crystal. Under these conditions, the assembled molecules undergo an internal rearrangement in the solid state to form a well-defined chiral crystal structure. Moreover, these assemblies exhibit enhanced emission. This strategy for the synthesis of single-component supramolecular assemblies can create new functions by manipulating phase transitions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201612024-sup-0001-misc_information.pdf1.1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Chen, P. Slattum, C. Y. Wang, L. Zang, Chem. Rev. 2015, 115, 11967–11998.
- 2A. Pal, M. Malakoutikhah, G. Leonetti, M. Tezcan, M. Colomb-Delsuc, V. D. Nguyen, J. Gucht, S. Otto, Angew. Chem. Int. Ed. 2015, 54, 7852–7856; Angew. Chem. 2015, 127, 7963–7967.
- 3M. Li, M. R. Stojković, M. Ehlers, E. Zellermann, I. Piantanida, C. Schmuck, Angew. Chem. Int. Ed. 2016, 55, 13015–13018; Angew. Chem. 2016, 128, 13209–13212.
- 4L. Adler-Abramovich, P. Marco, Z. A. Arnon, R. C. G. Creasey, T. C. T. Michaels, A. Levin, D. J. Scurr, C. J. Roberts, T. P. J. Knowles, S. J. B. Tendler, E. Gazit, ACS Nano 2016, 10, 7436–7442.
- 5S. Fleming, R. V. Ulijn, Chem. Soc. Rev. 2014, 43, 8150–8177.
- 6B. Duan, X. Zheng, Z. X. Xia, X. L. Fan, L. Guo, J. F. Liu, Y. F. Wang, Q. F. Ye, L. N. Zhang, Angew. Chem. Int. Ed. 2015, 54, 5152–5156; Angew. Chem. 2015, 127, 5241–5245.
- 7B. Volker, H. Ivan, R. G. Khoury, M. J. Krische, J. M. Lehn, Nature 2000, 407, 720–723.
- 8E. Gazit, Nat. Nanotechnol. 2016, 11, 309–310.
- 9J. Wang, K. Liu, R. R. Xing, X. H. Yan, Chem. Soc. Rev. 2016, 45, 5589–5604.
- 10M. Reches, E. Gazit, Science 2003, 300, 625–627.
- 11H. Zhang, J. B. Fei, X. H. Yan, A. H. Wang, J. B. Li, Adv. Funct. Mater. 2015, 25, 1193–1204.
- 12X. H. Yan, P. L. Zhu, J. B. Li, Chem. Soc. Rev. 2010, 39, 1877–1890.
- 13J. Y. Li, Y. Kuang, Y. Gao, X. W. Du, J. F. Shi, B. Xu, J. Am. Chem. Soc. 2013, 135, 542–545.
- 14Q. L. Zou, L. Zhang, X. H. Yan, A. H. Wang, G. H. Ma, J. B. Li, H. Möhwald, S. Mann, Angew. Chem. Int. Ed. 2014, 53, 2366–2370; Angew. Chem. 2014, 126, 2398–2402.
- 15S. Kim, J. H. Kim, J. S. Lee, C. B. Park, Small 2015, 11, 3623–3640.
- 16J. Wang, K. Liu, L. Y. Yan, A. H. Wang, S. Bai, X. H. Yan, ACS Nano 2016, 10, 2138–2143.
- 17X. C. Liu, P. L. Zhu, J. B. Fei, J. Zhao, X. H. Yan, J. B. Li, Chem. Eur. J. 2015, 21, 9461–9467.
- 18P. L. Zhu, X. H. Yan, Y. Su, Y. Yang, J. B. Li, Chem. Eur. J. 2010, 16, 3176–3183.
- 19Y. Su, X. H. Yan, A. H. Wang, J. B. Fei, Y. Cui, Q. He, J. B. Li, J. Mater. Chem. 2010, 20, 6734–6740.
- 20S. Dattaa, S. Bhattacharya, Chem. Soc. Rev. 2015, 44, 5596–5637.
- 21E. R. Draper, E. G. B. Eden, T. O. McDonald, D. J. Adams, Nat. Chem. 2015, 7, 848–852.
- 22S. Mondal, L. A. Abramovich, A. Lampel, Y. Bram, S. Lipstman, E. Gazit, Nat. Commun. 2015, 6, 8615.
- 23C. G. Pappas, I. R. Sasselli, R. V. Ulijn, Angew. Chem. Int. Ed. 2015, 54, 8119–8123; Angew. Chem. 2015, 127, 8237–8241.
- 24Z. G. Gao, L. Li, Y. Bao, Z. Wang, H. X. Hao, Q. X. Yin, J. K. Wang, Ind. Eng. Chem. Res. 2016, 55, 3075–3083.
- 25A. R. Hirst, I. A. Coates, T. R. Boucheteau, J. F. Miravet, B. Escuder, V. Castelletto, I. W. Hamley, D. K. Smith, J. Am. Chem. Soc. 2008, 130, 9113–9121.
- 26A. I. Carrillo, J. Bachl, J. Mayr, P. J. Plaza-Gonzalez, J. M. Catala-Civera, D. D. Diaz, Phys. Chem. Chem. Phys. 2015, 17, 6212–6216.
- 27S. Saha, E. M. Schon, C. Cativiela, D. D. Diaz, R. Banerjee, Chem. Eur. J. 2013, 19, 9562–9568.
- 28I. Ramos Sasselli, P. J. Halling, R. V. Ulijn, T. Tuttle, ACS Nano 2016, 10, 2661–2668.
- 29V. A. Mallia, P. D. Butler, B. Sarkar, K. T. Holman, R. G. Weiss, J. Am. Chem. Soc. 2011, 133, 15045–15054.
- 30W. Liyanage, W. W. Brennessel, B. L. Nilsson, Langmuir 2015, 31, 9933–9942.
- 31D. K. Kumar, J. W. Steed, Chem. Soc. Rev. 2014, 43, 2080–2088.
- 32Y. Xu, C. Q. Kang, Y. Chen, Z. Bian, X. P. Qiu, L. X. Gao, Q. X. Meng, Chem. Eur. J. 2012, 18, 16955–16961.
- 33J. B. Ouyang, J. K. Wang, X. Huang, Y. Gao, Y. Bao, Y. L. Wang, Q. X. Yin, H. X. Hao, Ind. Eng. Chem. Res. 2014, 53, 16859–16863.
- 34J. Liu, F. Y. Xu, Z. L. Sun, Y. Pan, J. Tian, H. C. Linc, X. M. Li, Soft Matter 2016, 12, 141–148.
- 35S. V. Ketov, Y. H. Sun, S. Nachum, Z. Lu, A. Checchi, A. R. Beraldin, H. Y. Bai, W. H. Wang, D. V. Louzguine-Luzgin, M. A. Carpenter, A. L. Greer, Nature 2015, 524, 200–203.
- 36X. H. Yan, J. B. Li, H. Möhwald, Adv. Mater. 2011, 23, 2796–2801.
- 37M. Reches, E. Gazit, Nat. Nanotechnol. 2006, 1, 195–200.
- 38N. Hendler, N. Slidelman, M. Reches, E. Gazit, Y. Rosenberg, S. Richter, Adv. Mater. 2007, 19, 1485–1488.
- 39Y. Lan, M. G. Corradini, R. G. Weiss, S. R. Raghavanc, M. A. Rogers, Chem. Soc. Rev. 2015, 44, 6035–6058.
- 40L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201–1217.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.