Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film
Haitao Li
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Han Dai
Yantai Nanshan University, Longkou, Shandong Province, 265713 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yihe Zhang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Wangshu Tong
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Hua Gao
School of Science, China University of Geosciences, Beijing, 100083 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Qi An
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorHaitao Li
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Han Dai
Yantai Nanshan University, Longkou, Shandong Province, 265713 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Yihe Zhang
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Wangshu Tong
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorDr. Hua Gao
School of Science, China University of Geosciences, Beijing, 100083 P.R. China
Search for more papers by this authorCorresponding Author
Dr. Qi An
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083 China
Search for more papers by this authorAbstract
Electrochemically up-regulated surface-enhanced Raman spectroscopy (E-SERS) effectively increases Raman signal intensities. However, the instrumental requirements and the conventional measurement conditions in an electrolyte cell have hampered its application in fast and on-site detection. To circumvent the inconveniences of E-SERS, we propose a self-energizing substrate that provides electrical potential by converting film deformation from a finger press into stored electrical energy. The substrate combines an energy conversion film and a SERS-active Ag nanowire layer. A composite film prepared from a piezoelectric polymer matrix and surface-engineered rGO that simultaneously presents high permittivity and low dielectric loss is the key component herein. Using our substrate, increased E-SERS signals up to 10 times from a variety of molecules were obtained in the open air. Various tests on real-life sample surfaces demonstrated the potentials of the substrate in fast on-site detection.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201610737-sup-0001-misc_information.pdf1.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett. 1974, 26, 163–166.
- 2D. Y. Wu, J. F. Li, B. Ren, Z. Q. Tian, Chem. Soc. Rev. 2008, 37, 1025–1041.
- 3S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian, Nat. Rev. Mater. 2016, 1, 16021.
- 4Y. Wang, B. Yan, L. Chen, Chem. Rev. 2012, 112, 1391–1428.
- 5L. A. Lane, X. Qian, S. Nie, Chem. Rev. 2015, 115, 10489–10529.
- 6S. Schlücker, Angew. Chem. Int. Ed. 2014, 53, 4756–4795; Angew. Chem. 2014, 126, 4852–4894.
- 7R. A. Alvarez-Puebla, L. M. Liz-Marzan, Chem. Soc. Rev. 2012, 41, 43–51.
- 8B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y. H. Lee, H. V. Demir, X. Y. Ling, Q. Xiong, ACS Nano 2013, 7, 5993–6000.
- 9W. Fang, X. Zhang, Y. Chen, L. Wan, W. Huang, A. Shen, J. Hu, Anal. Chem. 2015, 87, 9217–9224.
- 10J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin, J. Zhang, T. Chen, L. Guo, Anal. Chem. 2016, 88, 2149–2155.
- 11Y. Leroux, J. C. Lacroix, C. Fave, G. Trippe, N. Félidj, J. Aubard, A. Hohenau, J. R. Krenn, ACS Nano 2008, 2, 728–732.
- 12L. H. Shao, M. Ruther, S. Linden, S. Essig, K. Busch, J. Weissmüller, M. Wegener, Adv. Mater. 2010, 22, 5173–5177.
- 13E. Cortés, P. G. Etchegoin, E. C. Le Ru, A. Fainstein, M. E. Vela, R. C. Salvarezza, Anal. Chem. 2010, 82, 6919–6925.
- 14C. Zong, C. J. Chen, M. Zhang, D. Y. Wu, B. Ren, J. Am. Chem. Soc. 2015, 137, 11768–11774.
- 15J. F. Li, Y. J. Zhang, A. V. Rudnev, J. R. Anema, S. B. Li, W. J. Hong, P. Rajapandiyan, J. Lipkowski, T. Wandlowski, Z. Q. Tian, J. Am. Chem. Soc. 2015, 137, 2400–2408.
- 16S. G. Harroun, T. J. Abraham, C. Prudhoe, Y. Zhang, P. J. Scammells, C. L. Brosseau, C. C. Pye, R. D. Singer, Phys. Chem. Chem. Phys. 2013, 15, 19205–19212.
- 17E. del Puerto, A. Cuesta, S. Sanchez-Cortes, J. V. Garcia-Ramosa, C. Domingo, Analyst 2013, 138, 4670–4676.
- 18L. Zhong, Y. Jiang, C. Liow, F. Meng, Y. Sun, B. K. Chandran, Z. Liang, L. Jiang, S. Li, X. Chen, Small 2015, 11, 5395–5401.
- 19A. M. Robinson, S. G. Harroun, J. Bergman, C. L. Brosseau, Anal. Chem. 2012, 84, 1760–1764.
- 20Y. Shi, W. Wang, J. Zhan, Nano Res. 2016, 9, 2487–2497.
- 21S. G. Park, C. Mun, M. Lee, T. Y. Jeon, H. S. Shim, Y. J. Lee, J. D. Kwon, D. S. Kim, D. H. Kim, Adv. Mater. 2015, 27, 4290–4295.
- 22W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv, Q. An, Carbon 2015, 94, 590–598.
- 23W. Tong, Y. Zhang, Q. Zhang, X. Luan, F. Lv, L. Liu, Q. An, Adv. Funct. Mater. 2015, 25, 7029–7037.
- 24X. Li, Y. Zhang, Y. Wu, Y. Duan, X. Luan, Q. Zhang, Q. An, ACS Appl. Mater. Interfaces 2015, 7, 19353–19361.
- 25H. Guo, L. Ding, Y. Mo, J. Mol. Struct. 2011, 991, 103–107.
- 26J. S. Kang, S. Y. Hwang, C. J. Lee, M. S. Lee, Bull. Korean Chem. Soc. 2002, 23, 1604–1610.
- 27C. Liow, F. Meng, X. Chen, S. Li, J. Phys. Chem. C 2014, 118, 27531–27538.
- 28P. C. Sevinc, B. Dhital, V. Govind Rao, Y. Wang, H. P. Lu, J. Am. Chem. Soc. 2016, 138, 1536–1542.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.