Synthesis of Indoles and Pyrroles Utilizing Iridium Carbenes Generated from Sulfoxonium Ylides
Corresponding Author
Dr. Janakiram Vaitla
Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorDr. Annette Bayer
Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorDr. Kathrin H. Hopmann
Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorCorresponding Author
Dr. Janakiram Vaitla
Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorDr. Annette Bayer
Department of Chemistry, University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorDr. Kathrin H. Hopmann
Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC), University of Tromsø, 9037 Tromsø, Norway
Search for more papers by this authorAbstract
Metal carbenes can undergo a myriad of synthetic transformations. Sulfur ylides are potential safe precursors of metal carbenes. Herein, we report cascade reactions that involve carbenoids derived from sulfoxonium ylides for the efficient and regioselective synthesis of indoles and pyrroles. The tandem action of iridium and Brønsted acid catalysts enables rapid assembly of the heterocycles from unmodified anilines or readily accessible enamines under microwave irradiation. The key mechanistic steps are the catalytic transformation of the sulfoxonium ylide into an iridium–carbene complex, followed by N−H or C−H functionalization of an aniline or enamine, respectively, and a final acid-catalyzed cyclization. The present method was successfully applied to the synthesis of the densely functionalized pyrrole subunit of atorvastatin.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201610520-sup-0001-misc_information.pdf4.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA.-H. Li, L.-X. Dai, V. K. Aggarwal, Chem. Rev. 1997, 97, 2341;
- 1bV. K. Aggarwal, C. L. Winn, Acc. Chem. Res. 2004, 37, 611;
- 1cJ.-R. Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Rev. 2015, 115, 5301.
- 2
- 2aT.-R. Li, F. Tan, L.-Q. Lu, Y. Wei, Y.-N. Wang, Y.-Y. Liu, Q.-Q. Yang, J.-R. Chen, D.-Q. Shi, W.-J. Xiao, Nat. Commun. 2014, 5, 5500;
- 2bQ. Wang, X. Qi, L.-Q. Lu, T.-R. Li, Z.-G. Yuan, K. Zhang, B.-J. Li, Y. Lan, W.-J. Xiao, Angew. Chem. Int. Ed. 2016, 55, 2840; Angew. Chem. 2016, 128, 2890;
- 2cJ.-R. Chen, W.-R. Dong, M. Candy, F.-F. Pan, M. Jörres, C. Bolm, J. Am. Chem. Soc. 2012, 134, 6924;
- 2dS. Klimczyk, A. Misale, X. Huang, N. Maulide, Angew. Chem. Int. Ed. 2015, 54, 10365; Angew. Chem. 2015, 127, 10507;
- 2eS. Kramer, T. Skrydstrup, Angew. Chem. Int. Ed. 2012, 51, 4681; Angew. Chem. 2012, 124, 4759;
- 2fV. K. Aggarwal, J. G. Ford, S. Fonquerna, H. Adams, R. V. H. Jones, R. Fieldhouse, J. Am. Chem. Soc. 1998, 120, 8328;
- 2gX. Huang, S. Klimczyk, L. F. Veiros, N. Maulide, Chem. Sci. 2013, 4, 1105;
- 2hV. K. Aggarwal, J. G. Ford, A. Thompson, R. V. H. Jones, M. C. H. Standen, J. Am. Chem. Soc. 1996, 118, 7004;
- 2iX. Huang, B. Peng, M. Luparia, L. F. R. Gomes, L. F. Veiros, N. Maulide, Angew. Chem. Int. Ed. 2012, 51, 8886; Angew. Chem. 2012, 124, 9016;
- 2jJ. Sabbatani, X. Huang, L. F. Veiros, N. Maulide, Chem. Eur. J. 2014, 20, 10636;
- 2kS. Klimczyk, X. Huang, H. Kahlig, L. F. Veiros, N. Maulide, J. Org. Chem. 2015, 80, 5719.
- 3
- 3aE. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1964, 86, 1640;
- 3bB. M. Trost, J. Am. Chem. Soc. 1966, 88, 1587.
- 4M. Gandelman, B. Rybtchinski, N. Ashkenazi, R. M. Gauvin, D. Milstein, J. Am. Chem. Soc. 2001, 123, 5372.
- 5
- 5aJ. E. Baldwin, R. M. Adlington, C. R. A. Godfrey, D. W. Gollins, J. G. Vaughan, J. Chem. Soc. Chem. Commun. 1993, 1434;
- 5bI. K. Mangion, I. K. Nwamba, M. Shevlin, M. A. Huffman, Org. Lett. 2009, 11, 3566;
- 5cI. K. Mangion, M. Weisel, Tetrahedron Lett. 2010, 51, 5490;
- 5dA. M. Phelps, V. S. Chan, J. G. Napolitano, S. W. Krabbe, J. M. Schomaker, S. Shekhar, J. Org. Chem. 2016, 81, 4158;
- 5eA. C. B. Burtoloso, R. M. P. Dias, I. A. Leonarczyk, Eur. J. Org. Chem. 2013, 5005.
- 6C. Molinaro, P. G. Bulger, E. E. Lee, B. Kosjek, S. Lau, D. Gauvreau, M. E. Howard, D. J. Wallace, P. D. O'Shea, J. Org. Chem. 2012, 77, 2299.
- 7
- 7aJ. A. Moore, D. E. Ree, Org. Synth. 1961, 41, 16;
- 7bM. M. Bio, G. Javadi, Z. J. Song, Synthesis 2005, 19;
- 7cL. D. Proctor, A. J. Warr, Org. Process Res. Dev. 2002, 6, 884.
- 8M. Jia, S. Ma, Angew. Chem. Int. Ed. 2016, 55, 9134; Angew. Chem. 2016, 128, 9280.
- 9
- 9aT. Kawasaki, K. Higuchi, Nat. Prod. Rep. 2005, 22, 761;
- 9bA. J. Kochanowska-Karamyan, M. T. Hamann, Chem. Rev. 2010, 110, 4489;
- 9cS. Lal, T. J. Snape, Curr. Med. Chem. 2012, 19, 4828.
- 10
- 10aG. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875;
- 10bD. F. Taber, P. K. Tirunahari, Tetrahedron 2011, 67, 7195.
- 11Q.-Q. Yang, C. Xiao, L.-Q. Lu, J. An, F. Tan, B.-J. Li, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 9137; Angew. Chem. 2012, 124, 9271.
- 12R. Möhlau, Ber. Dtsch. Chem. Ges. 1881, 14, 171.
10.1002/cber.18810140146 Google Scholar
- 13
- 13aY. Vara, E. Aldaba, A. Arrieta, J. L. Pizarro, M. I. Arriortua, F. P. Cossio, Org. Biomol. Chem. 2008, 6, 1763;
- 13bV. Sridharan, S. Perumal, C. Avendaño, J. C. Menéndez, Synlett 2006, 0091.
- 14H. Meier, K.-P. Zeller, Angew. Chem. Int. Ed. Engl. 1975, 14, 32; Angew. Chem. 1975, 87, 52.
- 15
- 15aK. Pchalek, A. W. Jones, M. M. T. Wekking, D. S. Black, Tetrahedron 2005, 61, 77;
- 15bH. Galons, J.-F. Girardeau, C. C. Farnoux, M. Miocque, J. Heterocycl. Chem. 1981, 18, 561.
- 16For details, see the Supporting Information.
- 17L. Albrecht, L. K. Ransborg, V. Lauridsen, M. Overgaard, T. Zweifel, K. A. Jørgensen, Angew. Chem. Int. Ed. 2011, 50, 12496; Angew. Chem. 2011, 123, 12704.
- 18
- 18aH. Fan, J. Peng, M. T. Hamann, J.-F. Hu, Chem. Rev. 2008, 108, 264;
- 18bA. Fürstner, Angew. Chem. Int. Ed. 2003, 42, 3582; Angew. Chem. 2003, 115, 3706.
- 19A. P. Lea, D. McTavish, Drugs 1997, 53, 828.
- 20
- 20aT. J. Donohoe, N. J. Race, J. F. Bower, C. K. A. Callens, Org. Lett. 2010, 12, 4094;
- 20bP. Mathew, C. V. Asokan, Tetrahedron 2006, 62, 1708.
- 21M. N. Eberlin, C. Kascheres, J. Org. Chem. 1988, 53, 2084.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.