Schwarzer Phosphor neu entdeckt: vom Volumenmaterial zu Monoschichten
Dr. Rui Gusmão
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapur, 637371 Singapur
Search for more papers by this authorProf. Dr. Zdenek Sofer
Department of Inorganic Chemistry, University of Chemistry and Technology, Prag, Technicka 5, 166 28 Prag 6, Tschechische Republik
Search for more papers by this authorCorresponding Author
Prof. Dr. Martin Pumera
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapur, 637371 Singapur
Search for more papers by this authorDr. Rui Gusmão
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapur, 637371 Singapur
Search for more papers by this authorProf. Dr. Zdenek Sofer
Department of Inorganic Chemistry, University of Chemistry and Technology, Prag, Technicka 5, 166 28 Prag 6, Tschechische Republik
Search for more papers by this authorCorresponding Author
Prof. Dr. Martin Pumera
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapur, 637371 Singapur
Search for more papers by this authorAbstract
Phosphor ist ein Nichtmetall mit mehreren Allotropen – vom hochreaktiven weißen Phosphor bis zum thermodynamisch stabilen schwarzen Phosphor (SP) mit gewellter orthorhombischer Schichtstruktur. Die Volumenform von SP wurde erstmals 1914 synthetisiert, wurde aber wenig beachtet, bis sie 2014 als Teil einer neuen Welle schichtartiger 2D-Nanomaterialien wiederentdeckt wurde. SP kann zu einer Einzelschicht exfoliert werden, die eine halbleitende Struktur mit einstellbarer direkter Bandlücke, hoher Trägermobilität bei Raumtemperatur und Anisotropie innerhalb der Ebene aufweist. Allerdings ist oberflächenchemische Zersetzung ein Problem für die Entwicklung von SP-Anwendungen, weshalb an der Passivierung von SP gearbeitet wird, z. B. über Integration in Van-der-Waals-Heterostrukturen. Aktuell wird der Einsatz von SP als Nanomaterial in Batterien, Transistoren, Sensoren und in der Photonik geprüft. Der Aufsatz beginnt bei den Ursprüngen von SP und verfolgt dessen Weg von einem Volumenmaterial zu modernen Mehrfach-/Monoschichten. Physikalische und chemische Eigenschaften werden zusammengefasst, und der Forschungsstand über Anwendungen von SP wird beleuchtet.
Conflict of interest
Die Autoren erklären, dass keine Interessenskonflikte vorliegen.
References
- 1A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
- 2M. Pumera, A. H. Loo, TrAC Trends Anal. Chem. 2014, 61, 49–53.
- 3F. Bachhuber, J. Von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, R. Weihrich, Z. Kristallogr.-Cryst. Mater. 2015, 230, 107–115.
- 4N. Wiberg, A. F. Holleman in Holleman-Wiberg's Inorganic Chemistry (Hrsg.: ), Academic Press, San Diego 2001, S. 677–740.
- 5H. Okudera, R. E. Dinnebier, A. Simon, Z. Kristallogr. 2005, 220, 259–264.
- 6T. W. DeWitt, S. Skolnik, J. Am. Chem. Soc. 1946, 68, 2305–2309.
- 7H. Thurn, H. Krebs, Acta Crystallogr. Sect. B 1969, 25, 125–135.
- 8A. Pfitzner, M. F. Bräu, J. Zweck, G. Brunklaus, H. Eckert, Angew. Chem. Int. Ed. 2004, 43, 4228–4231; Angew. Chem. 2004, 116, 4324–4327.
- 9M. Ruck, D. Hoppe, B. Wahl, P. Simon, Y. Wang, G. Seifert, Angew. Chem. Int. Ed. 2005, 44, 7616–7619; Angew. Chem. 2005, 117, 7788–7792.
- 10F. Bachhuber, J. von Appen, R. Dronskowski, P. Schmidt, T. Nilges, A. Pfitzner, R. Weihrich, Angew. Chem. Int. Ed. 2014, 53, 11629–11633; Angew. Chem. 2014, 126, 11813–11817.
- 11N. Eckstein, A. Hohmann, R. Weihrich, T. Nilges, P. Schmidt, Z. Anorg. Allg. Chem. 2013, 639, 2741–2743.
- 12A. Pfitzner, Angew. Chem. Int. Ed. 2006, 45, 699–700; Angew. Chem. 2006, 118, 714–715.
- 13W. Hittorf, Ann. Phys. 1865, 202, 193–228.
10.1002/andp.18652021002 Google Scholar
- 14H. Thurn, H. Kerbs, Angew. Chem. Int. Ed. Engl. 1966, 5, 1047–1048; Angew. Chem. 1966, 78, 1101–1102.
- 15J. B. Smith, D. Hagaman, D. DiGuiseppi, R. Schweitzer-Stenner, H.-F. Ji, Angew. Chem. Int. Ed. 2016, 55, 11829–11833; Angew. Chem. 2016, 128, 12008–12012.
- 16A. Pfitzner, E. Freudenthaler, Angew. Chem. Int. Ed. Engl. 1995, 34, 1647–1649; Angew. Chem. 1995, 107, 1784–1786.
- 17S. Böcker, M. Häser, Z. Anorg. Allg. Chem. 1995, 621, 258–286.
- 18P. W. Bridgman, J. Am. Chem. Soc. 1916, 38, 609–612.
- 19O. Osters, T. Nilges, F. Bachhuber, F. Pielnhofer, R. Weihrich, M. Schöneich, P. Schmidt, Angew. Chem. Int. Ed. 2012, 51, 2994–2997; Angew. Chem. 2012, 124, 3049–3052.
- 20A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L′Heureux, N. Y.-W. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, R. Martel, Nat. Mater. 2015, 14, 826–832.
- 21J. Franklin Inst. 1884, 117, 222.
- 22P. W. Bridgman, J. Am. Chem. Soc. 1914, 36, 1344–1363.
- 23P. W. Bridgman, Phys. Rev. 1914, 3, 489–490.
10.1103/PhysRev.3.489 Google Scholar
- 24R. W. Keyes, Phys. Rev. 1953, 92, 580–584.
- 25R. H. Wentorf, Jr., The Art and Science of Growing Crystals, Wiley, New York, 1963.
- 26S. S. Boksha, J. Cryst. Growth 1968, 3–4, 426–429.
- 27Y. Harada, K. Murano, I. Shirotani, T. Takahashi, Y. Maruyama, Solid State Commun. 1982, 44, 877–879.
- 28Y. Fujii, Y. Akahama, S. Endo, S. Narita, Y. Yamada, G. Shirane, Solid State Commun. 1982, 44, 579–582.
- 29R. Yazami, P. Touzain, J. Power Sources 1983, 9, 365–371.
- 30S. Narita, Y. Akahama, Y. Tsukiyama, K. Muro, S. Mori, S. Endo, M. Taniguchi, M. Seki, S. Suga, A. Mikuni, H. Kanzaki, Phys. B+C 1983, 117–118, 422–424.
- 31H. Asahina, Y. Maruyama, A. Morita, Phys. B+C 1983, 117–118, 419–421.
- 32M. Taniguchi, S. Suga, M. Seki, H. Sakamoto, H. Kanzaki, Y. Akahama, S. Terada, S. Endo, S. Narita, Solid State Commun. 1983, 45, 59–61.
- 33H. Kawamura, I. Shirotani, K. Tachikawa, Solid State Commun. 1984, 49, 879–881.
- 34S. Sugai, I. Shirotani, Solid State Commun. 1985, 53, 753–755.
- 35Y. Akahama, S. Endo, S. Narita, Phys. B+C 1986, 139–140, 397–400.
- 36T. Nishii, Y. Maruyama, T. Inabe, I. Shirotani, Synth. Met. 1987, 18, 559–564.
- 37P. A. G. O'Hare, B. M. Lewis, I. Shirotani, Thermochim. Acta 1988, 129, 57–62.
- 38Y. Maruyama, T. Inabe, T. Nishii, L. He, A. J. Dann, I. Shirotani, M. R. Fahy, M. R. Willis, Synth. Met. 1989, 29, 213–218.
- 39I. Shirotani, R. Maniwa, H. Sato, A. Fukizawa, N. Sato, Y. Maruyama, T. Kajiwara, H. Inokuchi, S. Akimoto, Nippon Kagaku Kaishi 1981, 1604–1609.
- 40S. Endo, Y. Akahama, S. I. Terada, S. I. Narita, Jpn. J. Appl. Phys. 1982, 21, L482–L484.
- 41Y. Akahama, S. Endo, S.-I. Narita, J. Phys. Soc. Jpn. 1983, 52, 2148–2155.
- 42L.-Q. Sun, M.-J. Li, K. Sun, S.-H. Yu, R.-S. Wang, H.-M. Xie, J. Phys. Chem. C 2012, 116, 14772–14779.
- 43X. Li, B. Deng, X. Wang, S. Chen, M. Vaisman, S. Karato, G. Pan, M. L. Lee, J. Cha, H. Wang, F. Xia, 2D Mater. 2015, 2, 031002.
- 44P. L. Günther, P. Gesslle, W. Rebentisch, Z. Anorg. Allg. Chem. 1943, 250, 373–376.
- 45C.-M. Park, H.-J. Sohn, Adv. Mater. 2007, 19, 2465–2468.
- 46C. Suryanarayana, Prog. Mater. Sci. 2001, 46, 1–184.
- 47R. M. Davis, B. McDermott, C. C. Koch, Metall. Trans. A 1988, 19, 2867–2874.
- 48J. Sun, G. Zheng, H. W. Lee, N. Liu, H. Wang, H. Yao, W. Yang, Y. Cui, Nano Lett. 2014, 14, 4573–4580.
- 49H. Krebs, H. Weitz, K. H. Worms, Z. Anorg. Allg. Chem. 1955, 280, 119–133.
- 50A. Brown, S. Rundqvist, Acta Crystallogr. 1965, 19, 684–685.
- 51M. Baba, F. Izumida, Y. Takeda, A. Morita, Jpn. J. Appl. Phys. 1989, 28, 1019–1022.
- 52T. Nilges, M. Kersting, T. Pfeifer, J. Solid State Chem. 2008, 181, 1707–1711.
- 53M. Köpf, N. Eckstein, D. Pfister, C. Grotz, I. Krüger, M. Greiwe, T. Hansen, H. Kohlmann, T. Nilges, J. Cryst. Growth 2014, 405, 6–10.
- 54B. Liu, M. Köpf, A. A. Abbas, X. Wang, Q. Guo, Y. Jia, F. Xia, R. Weihrich, F. Bachhuber, F. Pielnhofer, H. Wang, R. Dhall, S. B. Cronin, M. Ge, X. Fang, T. Nilges, C. Zhou, Adv. Mater. 2015, 27, 4423–4429.
- 55H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P. D. Ye, ACS Nano 2014, 8, 4033–4041.
- 56W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. Zhang, Nano Res. 2014, 7, 853–859.
- 57P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, A. Salehi-Khojin, Adv. Mater. 2015, 27, 1887–1892.
- 58X. Zhang, H. Xie, Z. Liu, C. Tan, Z. Luo, H. Li, J. Lin, L. Sun, W. Chen, Z. Xu, L. Xie, W. Huang, H. Zhang, Angew. Chem. Int. Ed. 2015, 54, 3653–3657; Angew. Chem. 2015, 127, 3724–3728.
- 59J. Qiao, X. Kong, Z.-X. Hu, F. Yang, W. Ji, Nat. Commun. 2014, 5, 4475.
- 60A. Morita, Appl. Phys. A 1986, 39, 227–242.
- 61X. Liu, J. D. Wood, K. S. Chen, E. Cho, M. C. Hersam, J. Phys. Chem. Lett. 2015, 6, 773–778.
- 62A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant, 2D Mater. 2014, 1, 025001.
- 63X. Ji, C. E. Banks, A. Crossley, R. G. Compton, ChemPhysChem 2006, 7, 1337–1344.
- 64C. K. Chua, M. Pumera, Small 2015, 11, 1266–1272.
- 65M. Pumera, A. Ambrosi, E. L. K. Chng, Chem. Sci. 2012, 3, 3347–3355.
- 66A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. C. Neto, B. Özyilmaz, ACS Nano 2015, 9, 4138–4145.
- 67Y. Zhang, H. Wang, Z. Luo, H. T. Tan, B. Li, S. Sun, Z. Li, Y. Zong, Z. J. Xu, Y. Yang, K. A. Khor, Q. Yan, Adv. Energy Mater. 2016, 6, 1600453.
- 68P. Li, D. Zhang, J. Liu, H. Chang, Y. Sun, N. Yin, ACS Appl. Mater. Interfaces 2015, 7, 24396–24402.
- 69M. T. Edmonds, A. Tadich, A. Carvalho, A. Ziletti, K. M. O'Donnell, S. P. Koenig, D. F. Coker, B. Ozyilmaz, A. H. C. Neto, M. S. Fuhrer, ACS Appl. Mater. Interfaces 2015, 7, 14557–14562.
- 70J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies, Y. Lu, Nat. Commun. 2016, 7, 10450.
- 71S. Ge, L. Zhang, P. Wang, Y. Fang, Sci. Rep. 2016, 6, 27307.
- 72J.-S. Kim, Y. Liu, W. Zhu, S. Kim, D. Wu, L. Tao, A. Dodabalapur, K. Lai, D. Akinwande, Sci. Rep. 2015, 5, 8989.
- 73H. U. Lee, S. C. Lee, J. Won, B.-C. Son, S. Choi, Y. Kim, S. Y. Park, H.-S. Kim, Y.-C. Lee, J. Lee, Sci. Rep. 2015, 5, 8691.
- 74X.-B. Li, P. Guo, T.-F. Cao, H. Liu, W.-M. Lau, L.-M. Liu, Sci. Rep. 2015, 5, 10848.
- 75Y. Zhao, H. Wang, H. Huang, Q. Xiao, Y. Xu, Z. Guo, H. Xie, J. Shao, Z. Sun, W. Han, X.-F. Yu, P. Li, P. K. Chu, Angew. Chem. Int. Ed. 2016, 55, 5003–5007; Angew. Chem. 2016, 128, 5087–5091.
- 76J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 113, 1–5.
- 77J. Zhang, W. Ding, Z. Zhang, J. Xu, Y. Wen, RSC Adv. 2016, 6, 76174–76182.
- 78P. H. Ho, M. K. Li, R. Sankar, F. Y. Shih, S. S. Li, Y. R. Chang, W. H. Wang, F. C. Chou, C. W. Chen, ACS Photonics 2016, 3, 1102–1108.
- 79G. X. Wang, R. Pandey, S. P. Karna, Nanoscale 2015, 7, 524–531.
- 80P. Yasaei, A. Behranginia, T. Foroozan, M. Asadi, K. Kim, F. Khalili-Araghi, A. Salehi-Khojin, ACS Nano 2015, 9, 9898–9905.
- 81M. Serrano-Ruiz, M. Caporali, A. Ienco, V. Piazza, S. Heun, M. Peruzzini, Adv. Mater. Interfaces 2016, 3, 1500441.
- 82J. Kim, S. K. Baek, K. S. Kim, Y. J. Chang, E. J. Choi, Curr. Appl. Phys. 2016, 16, 165–169.
- 83J. Dai, X. C. Zeng, RSC Adv. 2014, 4, 48017–48021.
- 84D. Hanlon, C. Backes, E. Doherty, C. S. Cucinotta, N. C. Berner, C. Boland, K. Lee, A. Harvey, P. Lynch, Z. Gholamvand, S. Zhang, K. Wang, G. Moynihan, A. Pokle, Q. M. Ramasse, N. McEvoy, W. J. Blau, J. Wang, G. Abellan, F. Hauke, A. Hirsch, S. Sanvito, D. D. O'Regan, G. S. Duesberg, V. Nicolosi, J. N. Coleman, Nat. Commun. 2015, 6, 8563.
- 85P. Yasaei, A. Behranginia, T. Foroozan, K. Kim, F. Khalili-araghi, A. Salehi-khojin, ACS Nano 2015, 9, 9898–9905.
- 86M. B. Erande, M. S. Pawar, D. J. Late, ACS Appl. Mater. Interfaces 2016, 8, 11548–11556.
- 87C. Zhu, F. Xu, L. Zhang, M. Li, J. Chen, S. Xu, G. Huang, W. Chen, L. Sun, Chem. Eur. J. 2016, 22, 7357–7362.
- 88D. J. Late, Microporous Mesoporous Mater. 2016, 225, 494–503.
- 89X. Zhang, Q. Li, B. Xu, B. Wan, J. Yin, X. G. Wan, Phys. Lett. A 2016, 380, 614–620.
- 90C. R. Ryder, J. D. Wood, S. A. Wells, Y. Yang, D. Jariwala, T. J. Marks, G. C. Schatz, M. C. Hersam, Nat. Chem. 2016, 8, 597–602.
- 91J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, M. C. Hersam, Nano Lett. 2014, 14, 6964–6970.
- 92L. C. Xu, X. J. Song, Z. Yang, L. Cao, R. P. Liu, X. Y. Li, Appl. Surf. Sci. 2015, 324, 640–644.
- 93R. A. Doganov, E. C. T. O'Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, B. Özyilmaz, Nat. Commun. 2015, 6, 6647.
- 94J. Y. Lee, Y. J. Lin, Synth. Met. 2016, 212, 180–185.
- 95D. Yue, D. Lee, Y. Jang, M. S. Choi, H. J. Nam, D.-Y. Jung, W. J. Yoo, Nanoscale 2016, 8, 12773–12779.
- 96M. Castelaín, G. Martínez, P. Merino, J. Á. Martín-Gago, J. L. Segura, G. Ellis, H. J. Salavagione, Chem. Eur. J. 2012, 18, 4965–4973.
- 97A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, A. H. C. Neto, Phys. Rev. Lett. 2015, 114, 26–29.
- 98Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan, Nat. Rev. Mater. 2016, 16042.
- 99K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, Science 2016, 353, aac 9439–aac9439..
- 100Q. Zhou, Q. Chen, Y. Tong, J. Wang, Angew. Chem. Int. Ed. 2016, 55, 11437–11441; Angew. Chem. 2016, 128, 11609–11613.
- 101W. Luo, H. Xiang, Angew. Chem. Int. Ed. 2016, 55, 8575–8580; Angew. Chem. 2016, 128, 8717–8722.
- 102Y. Huang, J. Qiao, K. He, S. Bliznakov, E. Sutter, X. Chen, D. Luo, F. Meng, D. Su, J. Decker, W. Ji, R. S. Ruoff, P. Sutter, Chem. Mater. 2016, 28, 8330–8339.
- 103G. Abellán, V. Lloret, U. Mundloch, M. Marcia, C. Neiss, A. Görling, M. Varela, F. Hauke, A. Hirsch, Angew. Chem. Int. Ed. 2016, 55, 14557–14562; Angew. Chem. 2016, 128, 14777–14782.
- 104D. W. Kim, H. S. Jeong, K. O. Kwon, J. M. Ok, S. M. Kim, H.-T. Jung, Adv. Mater. Interfaces 2016, 3, 1600534.
- 105L. Viti, J. Hu, D. Coquillat, A. Politano, W. Knap, M. S. Vitiello, Sci. Rep. 2016, 6, 20474.
- 106J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, Q. J. Zhang, Sci. Rep. 2014, 4, 6452.
- 107T. H. Liu, C. C. Chang, Nanoscale 2015, 7, 10648–10654.
- 108R. Fei, A. Faghaninia, R. Soklaski, J. Yan, C. Lo, L. Yang, Nano Lett. 2014, 14, 6393–6399.
- 109J. Zhu, H. Park, J. Chen, X. Gu, H. Zhang, S. Karthikeyan, N. Wendel, S. A. Campbell, M. Dawber, X. Du, M. Li, J.-P. Wang, R. Yang, X. Wang, Adv. Electron. Mater. 2016, 2, 1600040.
- 110Z. Ong, Y. Cai, G. Zhang, Y. Zhang, J. Phys. Chem. C 2014, 118, 25272–25277.
- 111S. J. Choi, B. K. Kim, T. H. Lee, Y. H. Kim, Z. Li, E. Pop, J. J. Kim, J. H. Song, M. H. Bae, Nano Lett. 2016, 16, 3969–3975.
- 112A. Jain, A. J. H. McGaughey, Sci. Rep. 2015, 5, 8501.
- 113H. Jang, J. D. Wood, C. R. Ryder, M. C. Hersam, D. G. Cahill, Adv. Mater. 2015, 27, 8017–8022.
- 114G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, H.-J. Cui, Q.-R. Zheng, G. Su, Sci. Rep. 2014, 4, 6946.
- 115A. Ramasubramaniam, A. R. Muniz, Phys. Rev. B 2014, 90, 85424.
- 116L. Zhu, G. Zhang, B. Li, Phys. Rev. B 2014, 90, 214302.
- 117H. Y. Lv, W. J. Lu, D. F. Shao, Y. P. Sun, Phys. Rev. B 2014, 90, 85433.
- 118J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, P. H. Jiang, L. Sun, J. Shi, J. Mater. Chem. C 2016, 4, 991–998.
- 119G. Z. Qin, Q. B. Yan, Z. Z. Qin, S. Y. Yue, M. Hu, G. Su, Phys. Chem. Chem. Phys. 2015, 17, 4854–4858.
- 120H. Sun, G. Liu, Q. Li, X. G. Wan, Phys. Lett. A 2016, 380, 2098–2104.
- 121Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, Y. Iwasa, Nano Lett. 2016, 16, 4819–4824.
- 122Q. Liu, X. Zhang, L. B. Abdalla, A. Fazzio, A. Zunger, Nano Lett. 2015, 15, 1222–1228.
- 123Z. Sofer, D. Sedmidubský, Š. Huber, J. Luxa, D. Bouša, C. Boothroyd, M. Pumera, Angew. Chem. Int. Ed. 2016, 55, 3382–3386; Angew. Chem. 2016, 128, 3443–3447.
- 124S. Aubry, Phys. B 1994, 86, 284–296.
- 125Y. Cai, Q. Ke, G. Zhang, Y. W. Zhang, J. Phys. Chem. C 2015, 119, 3102–3110.
- 126Y. Du, H. Liu, B. Xu, L. Sheng, J. Yin, C.-G. Duan, X. Wan, Sci. Rep. 2015, 5, 8921.
- 127J. Ren, C. Zhang, J. Li, Z. Guo, H. Xiao, J. Zhong, Phys. Lett. A 2016, 380, 3270–3277.
- 128T. Strutz, N. Miura, Y. Akahama, Phys. B 1994, 194, 1185–1186.
- 129Y. Wang, A. Pham, S. Li, J. Yi, J. Phys. Chem. C 2016, 120, 9773–9779.
- 130Z. Zhang, X. Liu, J. Yu, Y. Hang, Y. Li, Y. Guo, Y. Xu, X. Sun, J. Zhou, W. Guo, WIREs Comput. Mol. Sci. 2016, 6, 324–350.
- 131X. Y. Zhou, R. Zhang, J. P. Sun, Y. L. Zou, D. Zhang, W. K. Lou, F. Cheng, G. H. Zhou, F. Zhai, K. Chang, Sci. Rep. 2015, 5, 12295.
- 132S. Balendhran, S. Walia, H. Nili, S. Sriram, M. Bhaskaran, Small 2015, 11, 640–652.
- 133A. Carvalho, M. Wang, X. Zhu, A. S. Rodin, H. Su, A. H. C. Neto, Nat. Rev. Mater. 2016, 1, 16061.
- 134Y. Li, S. Yang, J. Li, J. Phys. Chem. C 2014, 118, 23970–23976.
- 135A. S. Rodin, A. Carvalho, A. H. C. Neto, Phys. Rev. Lett. 2014, 112, 176801.
- 136X. Han, H. M. Stewart, S. A. Shevlin, C. R. A. Catlow, Z. X. Guo, Nano Lett. 2014, 14, 4607–4614.
- 137R. Fei, L. Yang, Nano Lett. 2014, 14, 2884–2889.
- 138J.-W. Jiang, H. S. Park, Nat. Commun. 2014, 5, 4727.
- 139J.-W. Jiang, T. Rabczuk, H. S. Park, Nanoscale 2015, 7, 6059–6068.
- 140J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng, C. Wang, C. Hu, P. Yao, ACS Nano 2015, 11362–11370.
- 141Y. Du, J. Maassen, W. Wu, Z. Luo, X. Xu, P. D. Ye, Nano Lett. 2016, 16, 6701–67080.
- 142M. Batmunkh, M. Bat-Erdene, J. G. Shapter, Adv. Mater. 2016, 28, 8586–8617.
- 143V. Eswaraiah, Q. Zeng, Y. Long, Z. Liu, Small 2016, 12, 3480–3502.
- 144H. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732–2743.
- 145J. Wu, N. Mao, L. Xie, H. Xu, J. Zhang, Angew. Chem. Int. Ed. 2015, 54, 2366–2369; Angew. Chem. 2015, 127, 2396–2399.
- 146H. B. Ribeiro, C. E. P. Villegas, D. A. Bahamon, D. Muraca, A. H. C. Neto, E. A. T. de Souza, A. R. Rocha, M. A. Pimenta, C. J. S. de Matos, Nat. Commun. 2016, 7, 12191.
- 147Y. Li, Z. Hu, S. Lin, S. K. Lai, W. Ji, S. P. Lau, Adv. Funct. Mater. 2017, 27, 1600986.
- 148R. Fei, L. Yang, Appl. Phys. Lett. 2015, 105, 83120.
- 149Z. Guo, H. Zhang, S. Lu, Z. Wang, S. Tang, J. Shao, Z. Sun, H. Xie, H. Wang, X. F. Yu, P. K. Chu, Adv. Funct. Mater. 2015, 25, 6996–7002.
- 150S. Liu, N. Huo, S. Gan, Y. Li, Z. Wei, B. Huang, J. Liu, J. Li, H. Chen, J. Mater. Chem. C 2015, 3, 10974–10980.
- 151A. Pawbake, M. B. Erande, S. R. Jadkar, D. J. Late, RSC Adv. 2016, 6, 76551–76555.
- 152S. Zhang, J. Yang, R. Xu, F. Wang, W. Li, M. Ghufran, Y. W. Zhang, Z. Yu, G. Zhang, Q. Qin, Y. Lu, ACS Nano 2014, 8, 9590–9596.
- 153A. Łapińska, A. Taube, J. Judek, M. Zdrojek, J. Phys. Chem. C 2016, 120, 5265–5270.
- 154H. B. Ribeiro, M. A. Pimenta, C. J. S. De Matos, R. L. Moreira, A. S. Rodin, J. D. Zapata, E. A. T. De Souza, A. H. C. Neto, ACS Nano 2015, 9, 4270–4276.
- 155X. Wang, A. M. Jones, K. L. Seyler, V. Tran, Y. Jia, H. Zhao, H. Wang, L. Yang, X. Xu, F. Xia, Nat. Nanotechnol. 2015, 10, 517–521.
- 156X. Zhang, Q.-H. Tan, J.-B. Wu, W. Shi, P.-H. Tan, Nanoscale 2016, 8, 6435–6450.
- 157M. V. V. M. S. Kishore, U. V. Varadaraju, J. Power Sources 2005, 144, 204–207.
- 158C.-M. Park, J.-H. Kim, H. Kim, H.-J. Sohn, Chem. Soc. Rev. 2010, 39, 3115–3141.
- 159M. C. Stan, J. Von Zamory, S. Passerini, T. Nilges, M. Winter, J. Mater. Chem. A 2013, 1, 5293.
- 160T. Ramireddy, T. Xing, M. M. Rahman, Y. Chen, Q. Dutercq, D. Gunzelmann, A. M. Glushenkov, J. Mater. Chem. A 2015, 3, 5572–5584.
- 161S. J. Zhao, W. Kang, J. M. Xue, J. Mater. Chem. A 2014, 2, 19046–19052.
- 162D. Wang, G. C. Guo, X. L. Wei, L. M. Liu, S. J. Zhao, J. Power Sources 2016, 302, 215–222.
- 163K. Hembram, H. Jung, B. C. Yeo, S. J. Pai, H. J. Lee, K.-R. Lee, S. S. Han, Phys. Chem. Chem. Phys. 2016, 18, 21391–21397.
- 164W. Xia, Q. Zhang, F. Xu, H. Ma, J. Chen, K. Qasim, B. Ge, C. Zhu, L. Sun, J. Phys. Chem. C 2016, 120, 5861–5868.
- 165Y. Zhang, X. Rui, Y. Tang, Y. Liu, J. Wei, S. Chen, W. R. Leow, W. Li, Y. Liu, J. Deng, B. Ma, Q. Yan, C. Chen, Adv. Energy Mater. 2016, 6, 1502409.
- 166K. P. S. S. Hembram, H. Jung, B. C. Yeo, S. J. Pai, S. Kim, K. R. Lee, S. S. Han, J. Phys. Chem. C 2015, 119, 15041–15046.
- 167D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431–3448; Angew. Chem. 2015, 127, 3495–3513.
- 168S. Banerjee, S. K. Pati, Chem. Commun. 2016, 52, 8381–8384.
- 169J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 2015, 10, 980–985.
- 170L. Chen, G. Zhou, Z. Liu, X. Ma, J. Chen, Z. Zhang, X. Ma, F. Li, H. M. Cheng, W. Ren, Adv. Mater. 2016, 28, 510–517.
- 171G.-L. Xu, Z. Chen, G.-M. Zhong, Y. Liu, Y. Yang, T. Ma, Y. Ren, X. Zuo, X.-H. Wu, X. Zhang, K. Amine, Nano Lett. 2016, 16, 3955–3965.
- 172J. B. Goodenough, K. S. Park, J. Am. Chem. Soc. 2013, 135, 1167–1176.
- 173M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara, K. Tokiwa, X. F. Yu, H. Ushiyama, K. Yamashita, J. Y. Son, K. Amine, Chem. Mater. 2016, 28, 1625–1635.
- 174D. Akinwande, N. Petrone, J. Hone, Nat. Commun. 2014, 5, 5678.
- 175C. Hao, B. Yang, F. Wen, J. Xiang, L. Li, W. Wang, Z. Zeng, B. Xu, Z. Zhao, Z. Liu, Y. Tian, Adv. Mater. 2016, 28, 3194–3201.
- 176K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
- 177F. Schwierz, Nat. Nanotechnol. 2010, 5, 487–496.
- 178D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam, ACS Nano 2014, 8, 1102–1120.
- 179M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. Van Der Zant, A. Castellanos-Gomez, Nano Lett. 2014, 14, 3347–3352.
- 180S. Das, M. Demarteau, A. Roelofs, ACS Nano 2014, 8, 11730–11738.
- 181S. Das, W. Zhang, M. Demarteau, M. Hoffman, M. Dubey, A. Roelofs, Nano Lett. 2014, 14, 4–5.
- 182Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, P. D. Ye, ACS Nano 2014, 8, 829.
- 183Y. Du, H. Liu, Y. Deng, P. D. Ye, ACS Nano 2014, 8, 10035–10042.
- 184T. Hong, B. Chamlagain, W. Lin, H.-J. Chuang, M. Pan, Z. Zhou, Y.-Q. Xu, Nanoscale 2014, 6, 8978–8983.
- 185L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372–377.
- 186J. Na, Y. T. Lee, J. A. Lim, D. K. Hwang, G. T. Kim, W. K. Choi, Y. W. Song, ACS Nano 2014, 8, 11753–11762.
- 187H. Wang, X. Wang, F. Xia, L. Wang, H. Jiang, Q. Xia, M. L. Chin, M. Dubey, S. J. Han, Nano Lett. 2014, 14, 6424–6429.
- 188Y. Chen, R. Ren, H. Pu, J. Chang, S. Mao, J. Chen, Biosens. Bioelectron. 2017, 89, 505–510.
- 189H. Du, X. Lin, Z. Xu, D. Chu, J. Mater. Chem. C 2015, 3, 8760–8775.
- 190J. Jia, S. K. Jang, S. Lai, J. Xu, Y. J. Choi, J. H. Park, S. Lee, ACS Nano 2015, 9, 8729–8736.
- 191J. S. Kim, P. J. Jeon, J. Lee, K. Choi, H. S. Lee, Y. Cho, Y. T. Lee, D. K. Hwang, S. Im, Nano Lett. 2015, 15, 5778–5783.
- 192Y. T. Lee, H. Kwon, J. S. Kim, H. H. Kim, Y. J. Lee, J. A. Lim, Y. W. Song, Y. Yi, W. K. Choi, D. K. Hwang, S. Im, ACS Nano 2015, 9, 10394–10401.
- 193D. Li, X. Wang, Q. Zhang, L. Zou, X. Xu, Z. Zhang, Adv. Funct. Mater. 2015, 25, 7360–7365.
- 194L. Li, G. J. Ye, V. Tran, R. Fei, G. Chen, H. Wang, J. Wang, K. Watanabe, T. Taniguchi, L. Yang, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2015, 10, 608–613.
- 195D. J. Perello, S. H. Chae, S. Song, Y. H. Lee, Nat. Commun. 2015, 6, 7809.
- 196M. V. Kamalakar, B. N. Madhushankar, A. Dankert, S. P. Dash, Small 2015, 11, 2209–2216.
- 197Z. Yang, J. Hao, S. Yuan, S. Lin, H. M. Yau, J. Dai, S. P. Lau, Adv. Mater. 2015, 27, 3748–3754.
- 198W. Zhu, M. N. Yogeesh, S. Yang, S. H. Aldave, J. S. Kim, S. Sonde, L. Tao, N. Lu, D. Akinwande, Nano Lett. 2015, 15, 1883–1890.
- 199M. Chhowalla, D. Jena, H. Zhang, Nat. Rev. Mater. 2016, 1, 16052.
- 200Q. Feng, F. Yan, W. Luo, K. Wang, Nanoscale 2016, 8, 2686–2692.
- 201N. Haratipour, S. Namgung, S. H. Oh, S. J. Koester, ACS Nano 2016, 10, 3791–3800.
- 202A. Hashmi, U. Farooq, J. Hong, Curr. Appl. Phys. 2016, 16, 318–323.
- 203M. Huang, M. Wang, C. Chen, Z. Ma, X. Li, J. Han, Y. Wu, Adv. Mater. 2016, 28, 3481–3485.
- 204P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, S. Im, Nano Lett. 2016, 16, 1293–1298.
- 205J. Kang, D. Jariwala, C. R. Ryder, S. A. Wells, Y. Choi, E. Hwang, J. H. Cho, T. J. Marks, M. C. Hersam, Nano Lett. 2016, 16, 2580–2585.
- 206S. P. Koenig, R. A. Doganov, L. Seixas, A. Carvalho, J. Y. Tan, K. Watanabe, T. Taniguchi, N. Yakovlev, A. H. C. Neto, B. Özyilmaz, Nano Lett. 2016, 16, 2145–2151.
- 207D. Lee, Y. Choi, E. Hwang, M. S. Kang, S. Lee, J. H. Cho, Nanoscale 2016, 8, 9107–9112.
- 208L. Li, M. Engel, D. B. Farmer, S. J. Han, H. S. P. Wong, ACS Nano 2016, 10, 4672–4677.
- 209Z.-P. Ling, J.-T. Zhu, X. Liu, K.-W. Ang, Sci. Rep. 2016, 6, 26609.
- 210X. Liu, K.-W. Ang, W. Yu, J. He, X. Feng, Q. Liu, H. Jiang, D. Tang, J. Wen, Y. Lu, W. Liu, P. Cao, S. Han, J. Wu, W. Liu, X. Wang, D. Zhu, Z. He, Sci. Rep. 2016, 6, 24920.
- 211R. Rahman, Sci. Rep. 2016, 6, 28515.
- 212X. Li, Y. Du, M. Si, L. Yang, S. Li, T. Li, X. Xiong, P. Ye, Y. Wu, Nanoscale 2016, 8, 3572–3578.
- 213B. Yang, B. Wan, Q. Zhou, Y. Wang, W. Hu, W. Lv, Q. Chen, Z. Zeng, F. Wen, J. Xiang, S. Yuan, J. Wang, B. Zhang, W. Wang, J. Zhang, B. Xu, Z. Zhao, Y. Tian, Z. Liu, Adv. Mater. 2016, 28, 9408–9415.
- 214X. Yu, S. Zhang, H. Zeng, Q. J. Wang, Nano Energy 2016, 25, 34–41.
- 215H. Kaur, S. Yadav, A. K. Srivastava, N. Singh, J. J. Schneider, O. P. Sinha, V. V. Agrawal, R. Srivastava, Sci. Rep. 2016, 6, 34095.
- 216F. Liu, J. Wang, H. Guo, Nanoscale 2016, 8, 18180–18186.
- 217J. Wu, G. K. W. Koon, D. Xiang, C. Han, C. T. Toh, E. S. Kulkarni, I. Verzhbitskiy, A. Carvalho, A. S. Rodin, S. P. Koenig, G. Eda, W. Chen, A. H. C. Neto, B. Özyilmaz, ACS Nano 2015, 9, 8070–8077.
- 218H. Zhu, S. McDonnell, X. Qin, A. Azcatl, L. Cheng, R. Addou, J. Kim, P. D. Ye, R. M. Wallace, ACS Appl. Mater. Interfaces 2015, 7, 13038–13043.
- 219K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, J. Kong, ACS Nano 2012, 6, 8583–8590.
- 220V. V. Kulish, O. I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 2015, 17, 992–1000.
- 221Y. Pan, Y. Wang, M. Ye, R. Quhe, H. Zhong, Z. Song, X. Peng, D. Yu, J. Yang, J. Shi, J. Lu, Chem. Mater. 2016, 28, 2100–2109.
- 222G. C. Constantinescu, N. D. M. Hine, Nano Lett. 2016, 16, 2586–2594.
- 223Z. Sun, A. Martinez, F. Wang, Nat. Photonics 2016, 10, 227–238.
- 224M. Engel, M. Steiner, P. Avouris, Nano Lett. 2014, 14, 6414–6417.
- 225T. Wang, S. Hu, B. Chamlagain, T. Hong, Z. Zhou, S. M. Weiss, Y. Q. Xu, Adv. Mater. 2016, 28, 7162–7166.
- 226L. Viti, J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Politano, M. S. Vitiello, Adv. Mater. 2015, 27, 5567–5572.
- 227Q. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. Deng, C. Li, S. J. Han, H. Wang, Q. Xia, T. P. Ma, T. Mueller, F. Xia, Nano Lett. 2016, 16, 4648–4655.
- 228N. Youngblood, C. Chen, S. J. Koester, M. Li, Nat. Photonics 2015, 9, 249–252.
- 229Y. Xu, J. Yuan, L. Fei, X. Wang, Q. Bao, Y. Wang, K. Zhang, Y. Zhang, Small 2016, 12, 5000–5007.
- 230J. Miao, S. Zhang, L. Cai, C. Wang, Adv. Electron. Mater. 2016, 2, 1500346.
- 231L. Kou, T. Frauenheim, C. Chen, J. Phys. Chem. Lett. 2014, 5, 2675–2681.
- 232A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, M. Köpf, T. Nilges, C. Zhou, ACS Nano 2015, 9, 5618–5624.
- 233S. Cui, H. Pu, S. A. Wells, Z. Wen, S. Mao, J. Chang, M. C. Hersam, J. Chen, Nat. Commun. 2015, 6, 8632.
- 234S.-Y. Cho, Y. Lee, H.-J. Koh, H. Jung, J.-S. Kim, H.-W. Yoo, J. Kim, H.-T. Jung, Adv. Mater. 2016, 28, 7020–7028.
- 235C. C. Mayorga-Martinez, Z. Sofer, M. Pumera, Angew. Chem. Int. Ed. 2015, 54, 14317–14320; Angew. Chem. 2015, 127, 14525–14528.
- 236Z. Sofer, D. Bouša, J. Luxa, V. Mazanek, M. Pumera, Chem. Commun. 2016, 52, 1563.
- 237S. Yan, B. Wang, Z. Wang, D. Hu, X. Xu, J. Wang, Y. Shi, Biosens. Bioelectron. 2016, 80, 34–38.
- 238V. Kumar, J. R. Brent, M. Shorie, H. Kaur, G. Chadha, A. G. Thomas, E. A. Lewis, A. P. Rooney, L. Nguyen, X. L. Zhong, M. G. Burke, S. J. Haigh, A. Walton, P. D. McNaughter, A. A. Tedstone, N. Savjani, C. A. Muryn, P. O'Brien, A. K. Ganguli, D. J. Lewis, P. Sabherwal, ACS Appl. Mater. Interfaces 2016, 8, 22860–22868.
- 239C. C. Mayorga-Martinez, N. M. Latiff, A. Y. S. Eng, Z. Sofer, M. Pumera, Anal. Chem. 2016, 88, 10074–10079.
- 240L. Wang, Z. Sofer, M. Pumera, ChemElectroChem 2015, 2, 324–327.
- 241Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang, P. K. Chu, Angew. Chem. Int. Ed. 2015, 54, 11526–11530; Angew. Chem. 2015, 127, 11688–11692.
- 242N. M. Latiff, W. Z. Teo, Z. Sofer, A. C. Fisher, M. Pumera, Chem. Eur. J. 2015, 21, 13991–13995.
- 243H. U. Lee, S. Y. Park, S. C. Lee, S. Choi, S. Seo, H. Kim, J. Won, K. Choi, K. S. Kang, H. G. Park, H.-S. Kim, H. R. An, K.-H. Jeong, Y.-C. Lee, J. Lee, Small 2016, 12, 214–219.
- 244W. Zhang, T. Huynh, P. Xiu, B. Zhou, C. Ye, B. Luan, R. Zhou, Carbon 2015, 94, 895–902.
- 245R. Lv, D. Yang, P. Yang, J. Xu, F. He, S. Gai, C. Li, Y. Dai, G. Yang, J. Lin, Chem. Mater. 2016, 28, 4724–4734.
- 246H. Wang, X. Yang, W. Shao, S. Chen, J. Xie, X. Zhang, J. Wang, Y. Xie, J. Am. Chem. Soc. 2015, 137, 11376–11382.
- 247Q. Jiang, L. Xu, N. Chen, H. Zhang, L. Dai, S. Wang, Angew. Chem. Int. Ed. 2016, 55, 13849–13853; Angew. Chem. 2016, 128, 14053–14057.
- 248L. Wang, Q. Xu, J. Xu, J. Weng, RSC Adv. 2016, 6, 69033–69039.
- 249M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, Energy Environ. Sci. 2016, 9, 709–728.
- 250B. Sa, Y. L. Li, J. Qi, R. Ahuja, Z. Sun, J. Phys. Chem. C 2014, 118, 26560–26568.
- 251Z. Shen, S. Sun, W. Wang, J. Liu, Z. Liu, J. C. Yu, J. Mater. Chem. A 2015, 3, 3285–3288.
- 252Y. Yang, J. Gao, Z. Zhang, S. Xiao, H. H. Xie, Z. B. Sun, J. H. Wang, C. H. Zhou, Y. W. Wang, X. Y. Guo, P. K. Chu, X.-F. Yu, Adv. Mater. 2016, 28, 8937–8944.
- 253S. Lin, S. Liu, Z. Yang, Y. Li, T. W. Ng, Z. Xu, Q. Bao, J. Hao, C. S. Lee, C. Surya, F. Yan, S. P. Lau, Adv. Funct. Mater. 2016, 26, 864–871.
- 254C. Hu, L. Dai, Angew. Chem. Int. Ed. 2016, 55, 11736–11758; Angew. Chem. 2016, 128, 11910–11933.
- 255Q. Xiang, J. Yu, M. Jaroniec, Chem. Soc. Rev. 2012, 41, 782–796.
- 256K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 2006, 440, 295.
- 257Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917–1933.
- 258Q. Xiang, B. Cheng, J. Yu, Angew. Chem. Int. Ed. 2015, 54, 11350–11366; Angew. Chem. 2015, 127, 11508–11524.
- 259V. Tran, R. Soklaski, Y. Liang, L. Yang, Phys. Rev. B 2014, 89, 235319.
- 260J. Guan, Z. Zhu, D. Tománek, Phys. Rev. Lett. 2014, 113, 46804.
- 261D. A. Ospina, C. A. Duque, J. D. Correa, E. S. Morell, Superlattices Microstruct. 2016, 97, 562–568.
- 262X. Peng, Q. Wei, A. Copple, Phys. Rev. B 2014, 90, 85402.
- 263E. T. Sisakht, M. H. Zare, F. Fazileh, Phys. Rev. B 2015, 91, 85409.
- 264A. N. Rudenko, M. I. Katsnelson, Phys. Rev. B 2014, 89, 201408.
- 265Y. Cai, G. Zhang, Y.-W. Zhang, Sci. Rep. 2014, 4, 6677.
- 266C. Xiang, A. Z. Weber, S. Ardo, A. Berger, Y. Chen, R. Coridan, K. T. Fountaine, S. Haussener, S. Hu, R. Liu, N. S. Lewis, M. A. Modestino, M. M. Shaner, M. R. Singh, J. C. Stevens, K. Sun, K. Walczak, Angew. Chem. Int. Ed. 2016, 55, 12974–12988; Angew. Chem. 2016, 128, 13168–13183.
- 267J. Dai, X. C. Zeng, J. Phys. Chem. Lett. 2014, 5, 1289–1293.
- 268M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, A. Castellanos-Gomez, Nat. Commun. 2014, 5, 4651.
- 269
- 269aM.-Y. Liu, Y. Huang, Q.-Y. Chen, C. Cao, Y. He, Sci. Rep. 2016, 6, 29114;
- 269bM. Pumera, Z. Sofer, Adv. Mater. 2017, 1605299.
- 270G. Pizzi, M. Gibertini, E. Dib, N. Marzari, G. Iannaccone, G. Fiori, Nat. Commun. 2016, 7, 12585.
- 271Y.-J. Wang, K.-G. Zhou, G. Yu, X. Zhong, H.-L. Zhang, Sci. Rep. 2016, 6, 24981.
- 272L. F. Yang, Y. Song, W. B. Mi, X. C. Wang, Appl. Phys. Lett. 2016, 109, 22103.
- 273S. Zhang, M. Xie, B. Cai, H. Zhang, Y. Ma, Z. Chen, Z. Zhu, Z. Hu, H. Zeng, Phys. Rev. B 2016, 93, 245303.
- 274S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 2016, 55, 1666–1669; Angew. Chem. 2016, 128, 1698–1701.
- 275S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 2015, 54, 3112–3115; Angew. Chem. 2015, 127, 3155–3158.
- 276E. Aktürk, O. Ü. Aktürk, S. Ciraci, Phys. Rev. B 2016, 94, 1–9.
- 277J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 2016, 7, 13352.
- 278C. Gibaja, D. Rodriguez-San-Miguel, P. Ares, J. Gómez-Herrero, M. Varela, R. Gillen, J. Maultzsch, F. Hauke, A. Hirsch, G. Abellán, F. Zamora, Angew. Chem. Int. Ed. 2016, 55, 14345–14349; Angew. Chem. 2016, 128, 14557–14561.
- 279P. Ares, F. Aguilar-Galindo, D. Rodríguez-San-Miguel, D. A. Aldave, S. Díaz-Tendero, M. Alcamí, F. Martín, J. Gímez-Herrero, F. Zamora, Adv. Mater. 2016, 28, 6332–6336.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.