Interband Absorption Enhanced Optical Activity in Discrete Au@Ag Core–Shell Nanocuboids: Probing Extended Helical Conformation of Chemisorbed Cysteine Molecules
Correction(s) for this article
-
Berichtigung: Interband Absorption Enhanced Optical Activity in Discrete Au@Ag Core–Shell Nanocuboids: Probing Extended Helical Conformation of Chemisorbed Cysteine Molecules
- Zhi Yong Bao,
- Wei Zhang,
- Yong-Liang Zhang,
- Jijun He,
- Jiyan Dai,
- Chi-Tung Yeung,
- Ga-Lai Law,
- Dang Yuan Lei,
- Volume 130Issue 4Angewandte Chemie
- pages: 880-880
- First Published online: January 16, 2018
Zhi Yong Bao
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorProf. Wei Zhang
Institute of Applied Physics and Computational Mathematics, Beijing, China
Search for more papers by this authorDr. Yong-Liang Zhang
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorJijun He
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorProf. Jiyan Dai
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorDr. Chi-Tung Yeung
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorDr. Ga-Lai Law
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dr. Dang Yuan Lei
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorZhi Yong Bao
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorProf. Wei Zhang
Institute of Applied Physics and Computational Mathematics, Beijing, China
Search for more papers by this authorDr. Yong-Liang Zhang
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorJijun He
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorProf. Jiyan Dai
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorDr. Chi-Tung Yeung
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorDr. Ga-Lai Law
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Dr. Dang Yuan Lei
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorAbstract
Detailed understanding of the interaction between a chiral molecule and a noble metal surface is essential to rationalize and advance interfacial self-assembly of amino acids and metal-mediated anchoring of proteins. Here we demonstrate that individual Au@Ag core–shell nanocuboids can serve as a plasmonic reporter of an extended helical network formed among chemisorbed cysteine molecules, through generating an interband absorption enhanced, Ag-surface-exclusive circular dichroism (CD) band in the UV region. The observed unusual, strong CD response in the hybrid Au@Ag–cysteine system can be used to probe in real time conformational evolution and structural rearrangement of biomolecules in general and also monitor the interfacial interaction between a metal surface and an adsorbed molecule, opening up the possibility of using Ag nanostructures as promising stereochemically attuned nanosensors.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201607563-sup-0001-misc_information.pdf1 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. Ostovar, L. Rocks, K. Faulds, D. Graham, V. Parchaňský, P. Bouř, E. W. Blanch, Nat. Chem. 2015, 7, 591–596;
- 1bA. Kuzyk, R. Schreiber, H. Zhang, A. O. Govorov, T. Lied, N. Liu, Nat. Mater. 2014, 13, 862–866;
- 1cY. Wang, J. Xu, Y. Wang, H. Chen, Chem. Soc. Rev. 2013, 42, 2930–2962;
- 1dN. Cecili, L. G. Ignacio, Chem. Soc. Rev. 2009, 38, 757–771;
- 1eZ. G. Wang, B. Ding, Acc. Chem. Res. 2014, 47, 1654–1662.
- 2
- 2aB. M. Maoz, R. Weegen, Z. Fan, A. O. Govorov, G. Ellestad, N. Berova, E. W. Meijer, G. Markovich, J. Am. Chem. Soc. 2012, 134, 17807–17813;
- 2bI. Lieberman, G. Shemer, T. Fried, E. M. Kosower, G. Markovich, Angew. Chem. Int. Ed. 2008, 47, 4855–4857; Angew. Chem. 2008, 120, 4933–4935;
- 2cT. Nakashima, Y. Kobayashi, T. Kawai, J. Am. Chem. Soc. 2009, 131, 10342–10343;
- 2dG. Shemer, O. Krichevski, G. Markovich, T. Molotsky, I. Lubitz, A. B. Kotlyar, J. Am. Chem. Soc. 2006, 128, 11006–11007.
- 3
- 3aZ. N. Zhu, W. J. Liu, Z. T. Li, B. Han, Y. L. Zhou, Y. Gao, Z. Y. Tang, ACS Nano 2012, 6, 2326;
- 3bB. Han, Z. Zhu, Z. Li, W. Zhang, Z. Y. Tang, J. Am. Chem. Soc. 2014, 136, 16104–16107;
- 3cL. Xu, Z. Xu, W. Ma, L. Liu, L. Wang, H. Kuang, C. Xu, J. Mater. Chem. B 2013, 1, 4478–4483;
- 3dW. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, N. A. Kotov, Nat. Commun. 2013, 4, 3689;
- 3eX. Wu, L. Xu, L. Liu, W. Ma, H. Yin, H. Kuang, L. Wang, C. Xu, A. K. Nicholas, J. Am. Chem. Soc. 2013, 135, 18629–18636.
- 4
- 4aX. Wang, Y. Wang, J. Zhu, Y. Xu, J. Phys. Chem. C 2014, 118, 5782–5788;
- 4bJ. S. Shen, D. H. Li, M. B. Zhang, J. Zhou, H. Zhang, Y. B. Jiang, Langmuir 2011, 27, 481–486;
- 4cT. Li, H. G. Park, H. S. Lee, S. H. Choi, Nanotechnology 2004, 15, S 660–S663;
- 4dR. Randazzo, A. D. Mauro, A. D'Urso, G. C. Messina, G. Compagnini, V. Villari, N. Micali, R. Purrello, M. E. Fragala, J. Phys. Chem. B 2015, 119, 4898–4904;
- 4eQ. Zhang, Y. Hong, N. Chen, D. D. Tao, Z. Li, Y. B. Jiang, Chem. Commun. 2015, 51, 8017–8019;
- 4fJ. Nan, X. P. Yan, Chem. Eur. J. 2010, 16, 423–427.
- 5
- 5aX. Lan, Q. Wang, Adv. Mater. 2016, DOI: 10.1002/adma.201600697;
- 5bS. H. Jung, J. Jeon, H. Kim, J. H. Jung, J. Am. Chem. Soc. 2014, 136, 6446–6452;
- 5cC. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, N. L. Rosi, Nano Lett. 2013, 13, 3256–3261;
- 5dW. Liu, Z. Zhu, K. Deng, Z. Li, Y. Zhou, H. Qiu, Y. Gao, S. Chen, Z. Tang, J. Am. Chem. Soc. 2013, 135, 9659–9664.
- 6
- 6aK. Appavoo, D. Y. Lei, Y. Sonnefraud, B. Wang, S. T. Pantelides, S. A. Maier, R. F. Haglund, Nano Lett. 2012, 12, 780–786;
- 6bZ. Y. Bao, X. Liu, J. Dai, Y. Wu, Y. H. Tsang, D. Y. Lei, Appl. Surf. Sci. 2014, 301, 351–357;
- 6cN. J. Halas, S. Lal, W. S. Chang, S. Link, P. Nordlander, Chem. Rev. 2011, 111, 3913–3961;
- 6dD. Y. Lei, K. Appavoo, F. Ligmajer, Y. Sonnefraud, R. F. Haglund, S. A. Maier, ACS Photonics 2015, 2, 1306–1313;
- 6eS. P. Rodrigues, Y. Cui, S. Lan, L. Kang, W. Cai, Adv. Mater. 2015, 27, 1124–1130;
- 6fE. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, D. Barron, N. Gadegaard, M. Kadodwala, Nat. Nanotechnol. 2010, 5, 783–787;
- 6gZ. Wang, F. Cheng, T. Winsor, Y. Liu, Nanotechnology 2016, 27, 412001;
- 6hY. Hou, H. M. Leung, C. T. Chan, J. Du, H. L.-W. Chan, D. Y. Lei, Adv. Funct. Mater. 2016, 26, 7807–7816.
- 7
- 7aK. C. See, J. B. Spicer, J. Brupbacher, D. Zhang, T. G. Vargo, J. Phys. Chem. B 2005, 109, 2693–2698;
- 7bF. Frederix, J. Friedt, K. Choi, W. Laureyn, A. Campitelli, D. Mondelaers, G. Maes, G. Borghs, Anal. Chem. 2003, 75, 6894–6900;
- 7cG. Hajisalem, D. K. Hore, R. Gordon, Opt. Mater. Exp. 2015, DOI: 10.1364/OME.5.002217;
- 7dZ. Y. Bao, D. Y. Lei, R. Jiang, X. Liu, J. Dai, J. Wang, L. W. C. Helen, Y. H. Tsang, Nanoscale 2014, 6, 9063;
- 7eR. Jiang, H. Chen, L. Shao, Q. Li, J. Wang, Adv. Mater. 2012, 24, OP 200–OP207.
- 8
- 8aF. Lu, Y. Tian, M. Liu, D. Su, H. Zhang, A. O. Govorov, O. Gang, Nano Lett. 2013, 13, 3145–3151;
- 8bY. Xia, Y. Zhou, Z. Tang, Nanoscale 2011, 3, 1374–1382;
- 8cX. Wu, L. Xu, W. Ma, L. Liu, H. Kuang, W. Yan, L. Wang, C. Xu, Adv. Funct. Mater. 2015, 25, 850–854;
- 8dY. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, N. A. Kotov, Nano Lett. 2014, 14, 3908–3913;
- 8eJ. M. Slocik, A. O. Govorov, R. R. Naik, Nano Lett. 2011, 11, 701–705.
- 9
- 9aN. A. Abdulrahman, Z. Fan, T. Tonooka, S. M. Kelly, N. Gadegaard, E. Hendry, A. O. Govorov, M. Kadodwala, Nano Lett. 2012, 12, 977–983;
- 9bB. M. Maoz, Y. Chaikin, A. B. Tesler, O. B. Elli, Z. Fan, A. O. Govorov, G. Markovich, Nano Lett. 2013, 13, 1203–1209;
- 9cH. Liu, Y. Ye, J. Chen, D. Lin, Z. Jiang, Z. Liu, B. Sun, L. Yang, J. Liu, Chem. Eur. J. 2012, 18, 8037–8041;
- 9dZ. Li, Z. Zhu, W. Liu, Y. Zhou, B. Han, Y. Gao, Z. Tang, J. Am. Chem. Soc. 2012, 134, 3322–3325.
- 10
- 10aZ. Zhu, J. Guo, W. Liu, Z. Li, B. Han, W. Zhang, Z. Tang, Angew. Chem. Int. Ed. 2013, 52, 13571–13575; Angew. Chem. 2013, 125, 13816–13820;
- 10bC. Jing, Y. Fang, Chem. Phys. 2007, 332, 27–32;
- 10cP. Rezanka, J. Koktan, H. Řezanková, P. Matějka, V. Král, Colloids Surf. A 2013, 436, 961–966;
- 10dY. Zhou, M. Yang, K. Sun, Z. Tang, N. A. Kotov, J. Am. Chem. Soc. 2010, 132, 6006–6013;
- 10eY. Zhou, Z. Zhu, W. Huang, W. Liu, S. Wu, X. Liu, Y. Gao, W. Zhang, Z. Tang, Angew. Chem. Int. Ed. 2011, 50, 11456–11459; Angew. Chem. 2011, 123, 11658–11661;
- 10fW. Zhang, A. O. Govorov, G. W. Bryant, Phys. Rev. Lett. 2006, 97, 146804.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.