A Modular Method for the High-Yield Synthesis of Site-Specific Protein–Polymer Therapeutics
Dr. Yan Pang
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorDr. Jinyao Liu
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorYizhi Qi
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorDr. Xinghai Li
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorCorresponding Author
Prof. Ashutosh Chilkoti
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorDr. Yan Pang
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorDr. Jinyao Liu
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorYizhi Qi
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
These authors contributed equally to this work
Search for more papers by this authorDr. Xinghai Li
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorCorresponding Author
Prof. Ashutosh Chilkoti
Department of Biomedical Engineering, Duke University, Durham, NC, 27708 USA
Search for more papers by this authorAbstract
A versatile method is described to engineer precisely defined protein/peptide–polymer therapeutics by a modular approach that consists of three steps: 1) fusion of a protein/peptide of interest with an elastin-like polypeptide that enables facile purification and high yields; 2) installation of a clickable group at the C terminus of the recombinant protein/peptide with almost complete conversion by enzyme-mediated ligation; and 3) attachment of a polymer by a click reaction with near-quantitative conversion. We demonstrate that this modular approach is applicable to various protein/peptide drugs and used it to conjugate them to structurally diverse water-soluble polymers that prolong the plasma circulation duration of these proteins. The protein/peptide–polymer conjugates exhibited significantly improved pharmacokinetics and therapeutic effects over the native protein/peptide upon administration to mice. The studies reported here provide a facile method for the synthesis of protein/peptide–polymer conjugates for therapeutic use and other applications.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201604661-sup-0001-misc_information.pdf839.5 KB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Walsh, Nat. Biotechnol. 2014, 32, 992–1000.
- 2B. Leader, Q. J. Baca, D. E. Golan, Nat. Rev. Drug Discovery 2008, 7, 21–39.
- 3V. H. L. Lee, Peptide and protein drug delivery, Mercel Dekker, New York, 1991.
- 4M. Werle, A. Bernkop-Schnurch, Amino Acids 2006, 30, 351–367.
- 5A. K. Banga, Parenteral controlled delivery and pharmacokinetics of therapeutic peptides and proteins. Therapeutic Peptides and Proteins, CRC, Boca Raton, FL, 2005, pp. 177–227.
- 6
- 6aM. Hamidi, A. Azadi, P. Rafiei, Drug Delivery 2006, 13, 399–409;
- 6bR. Bansal, E. Post, J. H. Proost, A. de Jager-Krikken, K. Poelstra, J. Prakash, J. Controlled Release 2011, 154, 233–240;
- 6cR. Duncan, Nat. Rev. Cancer 2006, 6, 688–701;
- 6dT. H. Kim, H. H. Jiang, S. M. Lim, Y. S. Youn, K. Y. Choi, S. Lee, X. Chen, Y. Byun, K. C. Lee, Bioconjugate Chem. 2012, 23, 2214–2220;
- 6eM. Liu, P. Johansen, F. Zabel, J.-C. Leroux, M. A. Gauthier, Nat. Commun. 2014, 5, 5526–5533;
- 6fA. J. Keefe, S. Y. Jiang, Nat. Chem. 2012, 4, 59–63.
- 7
- 7aR. M. Broyer, G. N. Grover, H. D. Maynard, Chem. Commun. 2011, 47, 2212–2226;
- 7bV. Gaberc-Porekar, I. Zore, B. Podobnik, V. Menart, Curr. Opin. Drug Discov. Devel. 2008, 11, 242–250;
- 7cB. Le Droumaguet, J. Nicolas, Polym. Chem. 2010, 1, 563–598;
- 7dB. S. Sumerlin, ACS Macro Lett. 2012, 1, 141–145;
- 7eM. A. Gauthier, H. Klok, Chem. Commun. 2008, 2591–2611;
- 7fJ. D. Schulz, M. Patt, S. Basler, H. Kries, D. Hilvert, M. A. Gauthier, J.-C. Leroux, Adv. Mater. 2016, 28, 1455–1460.
- 8
- 8aM. J. Roberts, M. D. Bentley, J. M. Harris, Adv. Drug Delivery Rev. 2002, 54, 459–476;
- 8bY. Qi, A. Chilkoti, Polym. Chem. 2014, 5, 266–276.
- 9A. Lewis, Y. Tang, S. Brocchini, J.-W. Choi, A. Godwin, Bioconjugate Chem. 2008, 19, 2144–2155.
- 10J. A. Johnson, Y. Y. Lu, J. A. Van Deventer, D. A. Tirrell, Curr. Opin. Chem. Biol. 2010, 14, 774–780.
- 11M. W. Popp, J. M. Antos, H. L. Ploegh, Curr. Protoc. Protein Sci. 2009, 56, 15.3.1–15.3.9.
- 12X. Ding, N. K. Saxena, S. Lin, N. A. Gupta, F. A. Anania, Hepatology 2006, 43, 173–181.
- 13J. Boekhorst, M. W. de Been, M. Kleerebezem, R. J. Siezen, J. Bacteriol. 2005, 187, 4928–4934.
- 14D. E. Meyer, A. Chilkoti, Nat. Biotechnol. 1999, 14, 1112–1115.
- 15H. Mao, S. A. Hart, A. Schink, B. A. Pollok, J. Am. Chem. Soc. 2004, 126, 2670–2671.
- 16
- 16aV. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596–2599;
10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 2708–2711;
- 16bM. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T. Rutjes, J. C. M. van Hest, F. L. van Delft, Chem. Commun. 2010, 46, 97–99;
- 16cL. M. Gaetke, C. K. Chow, Toxicology 2003, 189, 147–163.
- 17Y. S. Youn, D. H. Na, K. C. Lee, J. Controlled Release 2007, 117, 371–379.
- 18
- 18aA. Bond, Proc. (Bayl. Univ. Med. Cent.) 2006, 19, 281–284;
- 18bD. J. Drucker, Diabetes 1998, 47, 159–169;
- 18cD. G. Parkes, K. F. Mace, M. E. Trautmann, Expert Opin. Drug Delivery 2013, 8, 219–244;
- 18dP. A. Kothare, H. Linnebjerg, Y. Isaka, K. Uenaka, A. Yamamura, K. P. Yeo, A. Pena, C. H. Teng, K. Mace, M. Fineman, H. Shigeta, Y. Sakata, S. Irie, J. Clin. Pharmacol. 2008, 48, 1389–1399.
- 19R. Goke, H.-C. Fehmann, T. Linn, H. Schmidt, M. Krause, J. Eng, B. Goke, J. Biol. Chem. 1993, 268, 19650–19655.
- 20M. Amiram, K. M. Luginbuhl, X. H. Li, M. N. Feinglos, A. Chilkoti, Proc. Natl. Acad. Sci. USA 2013, 110, 2792–2797.
- 21M. S. Winzell, B. Ahren, Diabetes 2004, 53, S 215–S219.
- 22C. M. Mack, C. X. Moore, C. M. Jodka, S. Bhavsar, J. K. Wilson, J. A. Hoyt, J. L. Roan, J. L. Vu, K. D. Laugero, D. G. Parkes, A. A. Young, Int. J. Obes. 2006, 30, 1332–1340.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.