Catalytic SN2′- and Enantioselective Allylic Substitution with a Diborylmethane Reagent and Application in Synthesis
Ying Shi
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467 USA
Search for more papers by this authorCorresponding Author
Prof. Amir H. Hoveyda
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467 USA
Search for more papers by this authorYing Shi
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467 USA
Search for more papers by this authorCorresponding Author
Prof. Amir H. Hoveyda
Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467 USA
Search for more papers by this authorAbstract
A catalytic method for the site- and enantioselective addition of commercially available di-B(pin)-methane to allylic phosphates is introduced (pin=pinacolato). Transformations may be facilitated by an NHC–Cu complex (NHC=N-heterocyclic carbene) and products obtained in 63–95 % yield, 88:12 to >98:2 SN2′/SN2 selectivity, and 85:15–99:1 enantiomeric ratio. The utility of the approach, entailing the involvement of different catalytic cross-coupling processes, is highlighted by its application to the formal synthesis of the cytotoxic natural product rhopaloic acid A.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201600309-sup-0001-misc_information.pdf19.4 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews on catalytic enantioselective allylic substitution (EAS) reactions with “hard” organometallic reagents, see:
- 1aA. H. Hoveyda, A. W. Hird, M. A. Kacprzynski, Chem. Commun. 2004, 1779–1785;
- 1bH. Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 2005, 44, 4435–4439; Angew. Chem. 2005, 117, 4509–4513;
- 1cS. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824–2852;
- 1dA. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796–2823;
- 1eO. Baslé, A. Denicourt-Nowicki, C. Crévisy, M. Mauduit in Copper-Catalyzed Asymmetric Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2014, pp. 85–125.
10.1002/9783527664573.ch4 Google Scholar
- 2For a recent review regarding applications of catalytic EAS reactions to natural product synthesis, see: B. C. Calvo, J. Buter A. J. Minnaard in Copper-Catalyzed Asymmetric Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2014, pp. 373–447.
10.1002/9783527664573.ch14 Google Scholar
- 3
- 3aH. Ohmiya, U. Yokobori, Y. Makida, M. Sawamura, J. Am. Chem. Soc. 2010, 132, 2895–2897;
- 3bY. Shido, M. Yoshida, M. Tanabe, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2012, 134, 18573–18576;
- 3cK. Hojoh, Y. Shido, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed. 2014, 53, 4954–4958; Angew. Chem. 2014, 126, 5054–5058.
- 4B. Jung, A. H. Hoveyda, J. Am. Chem. Soc. 2012, 134, 1490–1493.
- 5
- 5aR. Shintani, K. Takatsu, M. Takeda, T. Hayashi, Angew. Chem. Int. Ed. 2011, 50, 8656–8659; Angew. Chem. 2011, 123, 8815–8818;
- 5bF. Gao, J. L. Carr, A. H. Hoveyda, Angew. Chem. Int. Ed. 2012, 51, 6613–6617; Angew. Chem. 2012, 124, 6717–6721;
- 5cF. Gao, J. L. Carr, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 2149–2161.
- 6Y. Shi, B. Jung, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2015, 137, 8948–8964.
- 7F. Meng, K. P. McGrath, A. H. Hoveyda, Nature 2014, 513, 367–374.
- 8
- 8aM. Yanai, S. Ohta, E. Ohta, S. Ikegami, Tetrahedron 1998, 54, 15607–15612;
- 8bS. Ohta, M. Uno, M. Yoshimura, Y. Hiraga, S. Ikegami, Tetrahedron Lett. 1996, 37, 2265–2266.
- 9For previous studies regarding the synthesis of rhopaloic acids, see:
- 9aB. B. Snider, F. He, Tetrahedron Lett. 1997, 38, 5453–5454;
- 9bR. Takagi, A. Sasaoka, S. Kojima, K. Ohkata, Chem. Commun. 1997, 1887–1888;
- 9cR. Takagi, A. Sasaoka, H. Nishitani, S. Kojima, Y. Hiraga, K. Ohkata, J. Chem. Soc. Perkin Trans. 1 1998, 925–934;
- 9dH. Nishitani, A. Sasaoka, M. Tokumasu, K. Ohkata, Heterocycles 1999, 50, 35–38;
- 9eK. Kadota, K. Ogasawara, Heterocycles 2003, 59, 485–490;
- 9fJ. C. R. Brioche, K. M. Goodenough, D. J. Whatrup, J. P. A. Harrity, Org. Lett. 2007, 9, 3941–3943;
- 9gJ. C. R. Brioche, K. M. Goodenough, D. J. Whatrup, J. P. A. Harrity, J. Org. Chem. 2008, 73, 1946–1953.
- 10For example, see:
- 10aK. Tissot-Croset, D. Polet, A. Alexakis, Angew. Chem. Int. Ed. 2004, 43, 2426–2428; Angew. Chem. 2004, 116, 2480–2482;
- 10bF. López, A. W. van Zijl, A. J. Minnaard, B. L. Feringa, Chem. Commun. 2006, 409–411.
- 11While this manuscript was being prepared, a report appeared regarding related non-enantioselective processes with allylic chlorides promoted by achiral NHC–Cu complexes; see: J. Kim, S. Park, J. Park, S. H. Cho, Angew. Chem. Int. Ed. 2016, 55, 1498–1501; Angew. Chem. 2016, 128, 1520–1523.
- 12D. S. Matteson, R. J. Moody, Organometallics 1982, 1, 20–28.
- 13
- 13aK. Endo, T. Ohkubo, M. Hirokami, T. Shibata, J. Am. Chem. Soc. 2010, 132, 11033–11035;
- 13bK. Endo, T. Ohkubo, T. Shibata, Org. Lett. 2011, 13, 3368–3371;
- 13cK. Endo, T. Ohkubo, T. Ishioka, T. Shibata, J. Org. Chem. 2012, 77, 4826–4831;
- 13dK. Endo, T. Ishioka, T. Ohkubo, T. Shibata, J. Org. Chem. 2012, 77, 7223–7231; for related investigations, see:
- 13eZ.-Q. Zhang, C.-T. Yang, L.-J. Liang, B. Xiao, X. Lu, J.-H. Liu, Y.-Y. San, T. B. Marder, Y. Fu, Org. Lett. 2014, 16, 6342–6345;
- 13fK. Endo, T. Ishioka, T. Shibata, Synlett 2014, 25, 2184–2188;
- 13gC. Sun, B. Potter, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 6534–6537;
- 13hB. Potter, A. A. Szymaniak, E. K. Edelstein, J. P. Morken, J. Am. Chem. Soc. 2014, 136, 17918–17921;
- 13iM. V. Joannou, B. S. Moyer, S. J. Meek, J. Am. Chem. Soc. 2015, 137, 6176–6179;
- 13jM. V. Joannou, B. S. Moyer, M. J. Goldfogel, S. J. Meek, Angew. Chem. Int. Ed. 2015, 54, 14141–14145; Angew. Chem. 2015, 127, 14347–14351.
- 14
- 14aF. Meng, F. Haeffner, A. H. Hoveyda, J. Am. Chem. Soc. 2014, 136, 11304–11307;
- 14bT. P. Blaisdell, J. P. Morken, J. Am. Chem. Soc. 2015, 137, 8712–8715.
- 15H. Clavier, L. Coutable, L. Toupet, J.-C. Guillemin, M. Mauduit, J. Organomet. Chem. 2005, 690, 5237–5254.
- 16T. L. May, M. K. Brown, A. H. Hoveyda, Angew. Chem. Int. Ed. 2008, 47, 7358–7362; Angew. Chem. 2008, 120, 7468–7472.
- 17For the synthesis of analogous homoallylic alcohols by other catalytic EAS strategies, see:
- 17aJ. P. Morken, M. T. Didiuk, A. H. Hoveyda, J. Am. Chem. Soc. 1993, 115, 6997–6998;
- 17bM. T. Didiuk, C. W. Johannes, J. P. Morken, A. H. Hoveyda, J. Am. Chem. Soc. 1995, 117, 7097–7104;
- 17cB. Yu, F. Menard, N. Isono, M. Lautens, Synthesis 2009, 853–859.
- 18Y. Lee, B. Li, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 11625–11633.
- 19The reason for this variation in e.r. is unclear at this time and the subject of ongoing mechanistic studies.
- 20The requisite iodide was prepared by a two-vessel process (alkynyl lithium addition followed by zirconocene hydride addition/iodine trapping) and in 58 % overall yield (>98:2 E/Z) from commercially available geranyl bromide; see:
- 20aR. S. Sulake, H.-H. Lin, C.-Y. Hsu, C.-F. Weng, C. Chen, J. Org. Chem. 2015, 80, 6044–6051;
- 20bP. Wipf, S. Lim, Angew. Chem. Int. Ed. Engl. 1993, 32, 1068–1071; Angew. Chem. 1993, 105, 1095–1097). See the Supporting Information for details.
- 21
- 21aN. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457–2483;
- 21bS. R. Chemler, D. Trauner, S. J. Danishefsky, Angew. Chem. Int. Ed. 2001, 40, 4544–4568;
10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 4676–4701.
- 22Attempts at using the boronic acid derivative led to an unidentifiable mixture of compounds.
- 23
- 23aK. Lee, H. Kim, J. Hong, Org. Lett. 2011, 13, 2722–2725; for a review on oxa-Michael processes, see:
- 23bC. F. Nising, S. Bräse, Chem. Soc. Rev. 2012, 41, 988–999.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.