Enantioselective Formal Syntheses of 11 Nuphar Alkaloids and Discovery of Potent Apoptotic Monomeric Analogues
Hui Li
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Alexander Korotkov
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCharles W. Chapman
Department of Pharmacology and Toxicology, Geisel School of Medicine, Lebanon, NH, 03756 USA
Search for more papers by this authorCorresponding Author
Prof. Alan Eastman
Department of Pharmacology and Toxicology, Geisel School of Medicine, Lebanon, NH, 03756 USA
Search for more papers by this authorCorresponding Author
Prof. Jimmy Wu
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorHui Li
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorDr. Alexander Korotkov
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorCharles W. Chapman
Department of Pharmacology and Toxicology, Geisel School of Medicine, Lebanon, NH, 03756 USA
Search for more papers by this authorCorresponding Author
Prof. Alan Eastman
Department of Pharmacology and Toxicology, Geisel School of Medicine, Lebanon, NH, 03756 USA
Search for more papers by this authorCorresponding Author
Prof. Jimmy Wu
Department of Chemistry, Dartmouth College, Hanover, NH, 03755 USA
Search for more papers by this authorAbstract
Concise, scalable, and enantioselective formal syntheses of eight dimeric and three monomeric nuphar alkaloids were achieved, along with the construction of a stereochemically diverse collection of the first known monomeric analogues having apoptotic activity. The syntheses involved the development of highly enantioselective Brønsted acid catalyzed vinylogous Mukaiyama–Mannich reactions, which feature the unprecedented use of a supersilyl group to control the regio-, enantio- and diastereoselectivity. Biological studies reveal that several of these novel nuphar analogues are even more potent than their dimeric natural product counterparts.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201600106-sup-0001-misc_information.pdf9.5 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. Achmatowicz, Z. Bellen, Tetrahedron Lett. 1962, 3, 1121–1124;
10.1016/S0040-4039(00)70971-3 Google Scholar
- 1bR. T. LaLonde, C. Wong, Pure Appl. Chem. 1977, 49, 169–181.
- 2S. Okamura, E. Nishiyama, T. Yamazaki, N. Otsuka, S. Taniguchi, W. Ogawa, T. Hatano, T. Tsuchiya, T. Kuroda, Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 1245–1252.
- 3W. P. Cullen, R. T. LaLonde, C. J. Wang, C. F. Wong, J. Pharm. Sci. 1973, 62, 826–827.
- 4J. Yamahara, H. Shimoda, H. Matsuda, M. Yoshikawa, Biol. Pharm. Bull. 1996, 19, 1241–1243.
- 5H. Matsuda, K. Yoshida, K. Miyagawa, Y. Nemoto, Y. Asao, M. Yoshikawa, Bioorg. Med. Chem. Lett. 2006, 16, 1567–1573.
- 6
- 6aK. M. Goodenough, W. J. Moran, P. Raubo, J. P. A. Harrity, J. Org. Chem. 2005, 70, 207–213, and references therein;
- 6bW. J. Moran, K. M. Goodenough, P. Raubo, J. P. A. Harrity, Org. Lett. 2003, 5, 3427–3429;
- 6cM. Katoh, H. Mizutani, T. Honda, Heterocycles 2006, 69, 193–216;
- 6dJ. Barluenga, F. Aznar, C. Ribas, C. Valdés, J. Org. Chem. 1999, 64, 3736–3740.
- 7J. Ozer, N. Eisner, E. Ostrozhenkova, A. Bacher, W. Eisenreich, D. Benharroch, A. Golan-Goldhirsh, J. Gopas, Cancer Biol. Ther. 2009, 8, 1860–1868.
- 8D. J. Jansen, R. A. Shenvi, J. Am. Chem. Soc. 2013, 135, 1209–1212.
- 9A. Korotkov, H. Li, C. Chapman, H. Xue, J. B. MacMillan, A. Eastman, J. Wu, Angew. Chem. Int. Ed. 2015, 54, 10604–10607; Angew. Chem. 2015, 127, 10750–10753.
- 10For review, see:
- 10aP. A. Wender, V. A. Verma, T. J. Paxton, T. H. Pillow, Acc. Chem. Res. 2008, 41, 40–49;
- 10bS. Wetzel, R. S. Bon, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2011, 50, 10800–10826; Angew. Chem. 2011, 123, 10990–11018; for selected recent examples, see:
- 10cB. DeChristopher, B. A. Loy, M. D. Marsden, A. J. Schrier, J. A. Zack, P. A. Wender, Nat. Chem. 2012, 4, 705–710;
- 10dJ. Švenda, M. Sheremet, L. Kremer, L. Maier, J. O. Bauer, C. Strohmann, S. Ziegler, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2015, 54, 5596–5602; Angew. Chem. 2015, 127, 5688–5694.
- 11
- 11aJ. Cybulski, K. Babel, K. Wojtasiewicz, J. Worbel, D. B. MacLean, Phytochemistry 1988, 27, 3339–3341;
- 11bN. Kogure, A. Nozoe, M. Kitajima, H. Takayama, Heterocycles 2009, 79, 1101–1105;
- 11cB. Maurer, G. Ohoff, Helv. Chim. Acta 1976, 59, 1169–1185.
- 12
- 12aF. Abels, C. Lindemann, E. Koch, C. Schneider, Org. Lett. 2012, 14, 5972–5975;
- 12bM. Sickert, F. Abels, M. Lang, J. Sieler, C. Birkemey, C. Schneider, Chem. Eur. J. 2010, 16, 2806–2818;
- 12cF. Abels, C. Lindemann, C. Schneider, Chem. Eur. J. 2014, 20, 1964–1979;
- 12dF. Abels, C. Schneider, Synthesis 2011, 4050–4054;
- 12eD. S. Giera, M. Sickert, C. Schneider, Org. Lett. 2008, 10, 4259–4262;
- 12fM. Sickert, C. Schneider, Angew. Chem. Int. Ed. 2008, 47, 3631–3634; Angew. Chem. 2008, 120, 3687–3690.
- 13During submission of this manuscript, Schneider et al. reported a similar strategy for preparing quinolizidines by vM-Mannich reactions using TBS-protected vinylketene acetals. See: C. Lindemann, C. Schneider, Synthesis 2016, 48, DOI: 10.1055/s-0035-1561289.
- 14For review, see:
- 14aS. F. Martin, Acc. Chem. Res. 2002, 35, 895–904; see also:
- 14bE. L. Carswell, M. L. Snapper, A. H. Hoveyda, Angew. Chem. Int. Ed. 2006, 45, 7230–7233; Angew. Chem. 2006, 118, 7388–7391;
- 14cL. C. Wieland, E. M. Vieira, M. L. Snapper, A. H. Hoveyda, J. Am. Chem. Soc. 2009, 131, 570–576.
- 15For selected recent examples, see:
- 15aP. B. Brady, H. Yamamoto, Angew. Chem. Int. Ed. 2012, 51, 1942–1946; Angew. Chem. 2012, 124, 1978–1982;
- 15bJ. Tan, M. Akakura, H. Yamamoto, Angew. Chem. Int. Ed. 2013, 52, 7198–7202; Angew. Chem. 2013, 125, 7339–7343;
- 15cA. Izumiseki, H. Yamamoto, J. Am. Chem. Soc. 2014, 136, 1308–1311;
- 15dA. Izumiseki, H. Yamamoto, Angew. Chem. Int. Ed. 2015, 54, 8697–8699; Angew. Chem. 2015, 127, 8821–8823;
- 15eF. H. Elsner, H. Woo, T. D. Tilley, J. Am. Chem. Soc. 1988, 110, 313–314.
- 16H. Li, J. Wu, Org. Lett. 2015, 17, 5424–5427.
- 17R. T. Lalonde, C. F. Wong, K. C. Das, J. Org. Chem. 1974, 39, 2892–2897.
- 18The ee value (97 %) was determined for (−)-12 instead of 34 because baseline separation of 34 on our chiral HPLC columns were unsuccessful.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.