Experimental and Theoretical Evidence for an Agostic Interaction in a Gold(III) Complex
Feriel Rekhroukh
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorDr. Laura Estévez
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (UMR 5254), Equipe Chimie Physique, Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
Departamento de Química Física, Universidade de Vigo, Facultade de Química Lagoas-Marcosende s/n, 36310 Vigo, Galicia, Spain
Search for more papers by this authorDr. Christian Bijani
Laboratoire de Chimie de Coordination (CNRS UPR 8241), 205 Route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Karinne Miqueu
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (UMR 5254), Equipe Chimie Physique, Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
Search for more papers by this authorCorresponding Author
Dr. Abderrahmane Amgoune
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorCorresponding Author
Dr. Didier Bourissou
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorFeriel Rekhroukh
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorDr. Laura Estévez
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (UMR 5254), Equipe Chimie Physique, Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
Departamento de Química Física, Universidade de Vigo, Facultade de Química Lagoas-Marcosende s/n, 36310 Vigo, Galicia, Spain
Search for more papers by this authorDr. Christian Bijani
Laboratoire de Chimie de Coordination (CNRS UPR 8241), 205 Route de Narbonne, 31077 Toulouse, France
Search for more papers by this authorCorresponding Author
Dr. Karinne Miqueu
Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux (UMR 5254), Equipe Chimie Physique, Université de Pau et des Pays de l'Adour, Hélioparc, 2 Avenue du Président Angot, 64053 Pau Cedex 09, France
Search for more papers by this authorCorresponding Author
Dr. Abderrahmane Amgoune
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorCorresponding Author
Dr. Didier Bourissou
Laboratoire Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/ CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
Search for more papers by this authorAbstract
The first agostic interaction in a gold complex is described. The presence of a bonding C−H⋅⋅⋅Au interaction in a cationic “tricoordinate” gold(III) complex was suggested by DFT calculations and was subsequently confirmed by NMR spectroscopy at low temperature. The agostic interaction was analyzed computationally using NBO and QTAIM analyses (NBO=natural bond orbital; QTAIM=quantum theory of atoms in molecules).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201511111-sup-0001-misc_information.pdf2.2 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1The term agostic interactions was defined by Brookhart and Green. See:
- 1aM. Brookhart, M. L. H. Green, J. Organomet. Chem. 1983, 250, 395–408;
- 1bM. Brookhart, M. L. H. Green, L. L. Wong, Prog. Inorg. Chem. 1988, 36, 1–124.
- 2For selected reviews, see:
- 2aW. Scherer, G. S. McGrady, Angew. Chem. Int. Ed. 2004, 43, 1782–1806; Angew. Chem. 2004, 116, 1816–1842;
- 2bE. Clot, O. Eisenstein, Struct. Bonding (Berlin) 2004, 113, 1–36;
- 2cM. Brookhart, M. L. H. Green, G. Parkin, Proc. Natl. Acad. Sci. USA 2007, 104, 6908–6914;
- 2dW. Scherer, V. Herz, C. Hauf, Struct. Bonding (Berlin) 2012, 146, 159–207;
- 2eJ. Saβmannshausen, Dalton Trans. 2012, 41, 1919–1923.
- 3The concept of agostic interactions has been extended to the coordination of σ(C−C) bonds. See:
- 3aM. Etienne, A. S. Weller, Chem. Soc. Rev. 2014, 43, 242–259;
- 3bY. Escudié, C. Dinoi, O. Allen, L. Vendier, M. Etienne, Angew. Chem. Int. Ed. 2012, 51, 2461–2464; Angew. Chem. 2012, 124, 2511–2514;
- 3cS. K. Brayshaw, J. C. Green, G. Kociok-Kohn, E. L. Sceats, A. S. Weller, Angew. Chem. Int. Ed. 2006, 45, 452–456; Angew. Chem. 2006, 118, 466–470.
- 4X. Ribas, C. Calle, A. Poater, A. Casitas, L. Gomez, R. Xifra, T. Parella, J. Benet-Buchholz, A. Schweiger, G. Mitrikas, M. Solà, A. Llobet, T. D. Stack, J. Am. Chem. Soc. 2010, 132, 12299–12306.
- 5
- 5aP. Gualco, A. Amgoune, K. Miqueu, S. Ladeira, D. Bourissou, J. Am. Chem. Soc. 2011, 133, 4257–4259;
- 5bM. Joost, S. Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Organometallics 2013, 32, 898–902.
- 6A. E. Nako, A. J. P. White, M. R. Crimmin, Dalton Trans. 2015, 44, 12530–12534.
- 7A copper diborane complex has been authenticated computationally, see: V. Lillo, M. R. Fructos, J. Ramirez, A. A. C. Braga, F. Maseras, D. R. Mar, P. J. Perez, E. Fernandez, Chem. Eur. J. 2007, 13, 2614–2621.
- 8Dihydrogen complexes of Au have been predicted computationally as intermediates in gold-catalyzed hydrogenation processes, see:
- 8aA. Comas-Vives, C. Gonzàlez-Arellano, A. Corma, M. Iglesias, F. Sanchez, G. Ujaque, J. Am. Chem. Soc. 2006, 128, 4756–4765;
- 8bA. Comas-Vives, G. Ujaque, J. Am. Chem. Soc. 2013, 135, 1295–1305.
- 9A. Ilie, C. I. Rat, S. Scheutzow, C. Kiske, K. Lux, T. M. Klapötke, C. Silvestru, K. Karaghiosoff, Inorg. Chem. 2011, 50, 2675–2684.
- 10M. A. Cinellu, A. Zucca, S. Stoccoro, G. Minghetti, M. Manassero, M. Sansoni, J. Chem. Soc. Dalton Trans. 1995, 2865–2872.
- 11F. Kraus, H. Schmidbaur, S. S. Al-juaid, Inorg. Chem. 2013, 52, 9669–9674.
- 12For discussions on agostic interactions in Cu and Ag complexes, see: X. Liu, R. Pattacini, P. Deglmann, P. Braunstein, Organometallics 2011, 30, 3302–3310.
- 13H. Schmidbaur, H. G. Raubenheimer, L. Dobrzanska, Chem. Soc. Rev. 2014, 43, 345–380.
- 14In the course of a study on β−H elimination/alkene insertion with NHC gold(I) complexes, Hashmi, Köppel, and co-workers also noted the “conspicuous absence of agostic interactions in AuI alkyl complexes”. See: G. Klatt, R. Xu, M. Pernpointner, L. Molinari, T. Quang Hung, F. Rominger, A. S. Hashmi, H. Köppel, Chem. Eur. J. 2013, 19, 3954–3961.
- 15M. Joost, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 15022–15045; Angew. Chem. 2015, 127, 15234–15258.
- 16
- 16aM. Joost, L. Estévez, K. Miqueu, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 5236–5240; Angew. Chem. 2015, 127, 5325–5329;
- 16bM. Joost, A. Zeineddine, L. Estévez, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, J. Am. Chem. Soc. 2014, 136, 14654–14657;
- 16cJ. Guenther, S. Mallet-Ladeira, L. Estevez, K. Miqueu, A. Amgoune, D. Bourissou, J. Am. Chem. Soc. 2014, 136, 1778–1781;
- 16dN. Lassauque, P. Gualco, S. Mallet-Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, J. Am. Chem. Soc. 2013, 135, 13827–13834;
- 16eP. Gualco, S. Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Organometallics 2012, 31, 6001–6004;
- 16fP. Gualco, S. Ladeira, K. Miqueu, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2011, 50, 8320–8324; Angew. Chem. 2011, 123, 8470–8474.
- 17F. Rekhroukh, R. Brousses, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2015, 54, 1266–1269; Angew. Chem. 2015, 127, 1282–1285.
- 18
- 18aM. D. Walter, P. S. White, M. Brookhart, Chem. Commun. 2009, 6361–6363;
- 18bM. D. Walter, R. A. Moorhouse, S. A. Urbin, P. S. White, M. Brookhart, J. Am. Chem. Soc. 2009, 131, 9055–9069.
- 19Tricoordinate alkyl gold(III) complexes are likely involved as intermediates in various reductive elimination reactions. For selected examples, see:
- 19aA. Tamaki, S. A. Magennis, J. K. Kochi, J. Am. Chem. Soc. 1974, 96, 6140–6148;
- 19bS. Komiya, T. A. Albright, R. Hoffmann, J. K. Kochi, J. Am. Chem. Soc. 1976, 98, 7255–7265;
- 19cV. J. Scott, J. A. Labinger, J. E. Bercaw, Organometallics 2010, 29, 4090–4096;
- 19dN. P. Mankad, F. D. Toste, Chem. Sci. 2012, 3, 72–76;
- 19eM. S. Winston, W. J. Wolf, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 7777–7782.
- 20Tricoordinate bis(silyl) phosphine gold(III) complexes have been characterized by NMR spectroscopy at low temperature, see: M. Joost, P. Gualco, Y. Coppel, K. Miqueu, C. E. Kefalidis, L. Maron, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2014, 53, 747–751; Angew. Chem. 2014, 126, 766–770.
- 21See the Supporting Information for details.
- 22The difference detected between A and B may result from distinct topologies of the electron density in the two complexes, according to recent studies by Scherer et al.[23] QTAIM calculations are consistent with the upfield shift detected for complex B, with the agostic C−H bond pointing towards a zone of charge depletion. However, similar analyses are not conclusive for complex A since the peripheral electron shells are not resolved in the Laplacian maps.[21]
- 23
- 23aW. Scherer, V. Herz, A. Brück, C. Hauf, F. Reiner, S. Altmannshofer, D. Leusser, D. Stalke, Angew. Chem. Int. Ed. 2011, 50, 2845–2849; Angew. Chem. 2011, 123, 2897–2902;
- 23bJ. E. Barquera-Lozada, A. Obenhuber, C. Hauf, W. Scherer, J. Phys. Chem. A 2013, 117, 4304–4315;
- 23cW. Scherer, A. C. Dunbar, J. E. Barquera-Lozada, D. Schmitz, G. Eickerling, D. Kratzert, D. Stalke, A. Lanza, P. Macchi, N. P. M. Casati, J. Ebad-Allah, C. Kuntscher, Angew. Chem. Int. Ed. 2015, 54, 2505–2509; Angew. Chem. 2015, 127, 2535–2539.
- 24For the relevance of these analyses to characterize agostic interactions, see: M. Lein, Coord. Chem. Rev. 2009, 253, 625–634.
- 25
- 25aP. L. A. Popelier, G. Logothetis, J. Organomet. Chem. 1998, 555, 101–111;
- 25bV. Tognetti, L. Joubert, R. Raucoules, T. De Bruin, C. Adamo, J. Phys. Chem. A 2012, 116, 5472–5479.
- 26H. Schmidbaur, A. Schier, Arabian J. Sci. Eng. 2012, 37, 1187–1225.
- 27For selected references on the important classes of gold(III) complexes, see:
- 27aD. A. Roşca, J. A. Wright, M. Bochmann, Dalton Trans. 2015, 44, 20785–20807;
- 27bD. A. Rosca, J. Fernandez-Cestau, J. Morris, J. A. Wright, M. Bochmann, Sci. Adv. 2015, 1, e 1500761;
- 27cE. Langseth, A. Nova, E. A. Tråseth, F. Rise, S. Øien, R. H. Heyn, M. Tilset, J. Am. Chem. Soc. 2014, 136, 10104–10115;
- 27dE. Langseth, M. L. Scheuermann, D. Balcells, W. Kaminsky, K. I. Goldberg, O. Eisenstein, R. H. Heyn, M. Tilset, Angew. Chem. Int. Ed. 2013, 52, 1660–1663; Angew. Chem. 2013, 125, 1704–1707;
- 27eN. Savjani, D. Rosca, M. Schormann, M. Bochmann, Angew. Chem. Int. Ed. 2013, 52, 874–877; Angew. Chem. 2013, 125, 908–911;
- 27fD. A. Roşca, J. A. Wright, D. L. Hughes, M. Bochmann, Nat. Commun. 2013, 4, 2167–2171;
- 27gD. A. Roşca, D. A. Smith, D. L. Hughes, M. Bochmann, Angew. Chem. Int. Ed. 2012, 51, 10643–10646; Angew. Chem. 2012, 124, 10795–10798;
- 27hA. S. K. Hashmi, Angew. Chem. Int. Ed. 2012, 51, 12935–12936; Angew. Chem. 2012, 124, 13109–13110;
- 27iM. A. Cinellu, G. Minghetti, F. Cocco, S. Stoccoro, A. Zucca, M. Manassero, Angew. Chem. Int. Ed. 2005, 44, 6892–6895; Angew. Chem. 2005, 117, 7052–7055.
- 28Toste and co-workers recently reported that tricoordinate cationic [(IPr)AuIII(biphenyl)] species generated in situ are catalytically active for Michael additions as well as for [4+2] and [2+2] cycloadditions to α,β-unsaturated carbonyl compounds. The active species was trapped by Lewis bases (H2O, DMF, chloride) and the trapped compounds were characterized as stable four-coordinate gold(III) adducts. See: C. Y. Wu, T. Horibe, C. B. Jacobsen, F. D. Toste, Nature 2015, 517, 449–454.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.