Synthesis of Nitrogen-Containing Rubicene and Tetrabenzopentacene Derivatives
Dr. Young S. Park
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. David J. Dibble
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Juhwan Kim
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorRobert C. Lopez
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorEriberto Vargas
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorCorresponding Author
Prof. Alon A. Gorodetsky
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorDr. Young S. Park
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. David J. Dibble
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
These authors contributed equally to this work.
Search for more papers by this authorDr. Juhwan Kim
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorRobert C. Lopez
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorEriberto Vargas
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorCorresponding Author
Prof. Alon A. Gorodetsky
Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, 92697 USA
Department of Chemistry, University of California, Irvine, Irvine, CA, 92697 USA
Search for more papers by this authorAbstract
Carbon-based materials, such as acenes, fullerenes, and graphene nanoribbons, are viewed as the potential successors to silicon in the next generation of electronics. Although a number of methodologies provide access to these materials’ all-carbon variants, relatively fewer strategies readily furnish their nitrogen-doped analogues. Herein, we report the rational design, preparation, and characterization of nitrogen-containing rubicenes and tetrabenzopentacenes, which can be viewed either as acene derivatives or as molecular fragments of fullerenes and graphene nanoribbons. The reported findings may prove valuable for the development of electron transporting organic semiconductors and for the eventual construction of larger carbonaceous systems.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange201510320-sup-0001-misc_information.pdf17.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Kitamura, Y. Arakawa, J. Phys. Condens. Matter 2008, 20, 184011.
- 2H. Sirringhaus, Adv. Mater. 2014, 26, 1319–1335.
- 3G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323–1338.
- 4J. Yan, B. R. Saunders, RSC Adv. 2014, 4, 43286–43314.
- 5F. Schwierz, Nat. Nanotechnol. 2010, 5, 487–496.
- 6A. C. Ferrari, F. Bonaccorso, V. Fal'ko, K. S. Novoselov, S. Roche, P. Bøggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, et al., Nanoscale 2015, 7, 4598–4810. (Complete list of authors in the Supporting Information, Reference S1).
- 7J. E. Anthony, Chem. Rev. 2006, 106, 5028–5048.
- 8J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483; Angew. Chem. 2008, 120, 460–492.
- 9H. Qu, C. Chi, Curr. Org. Chem. 2010, 14, 2070–2108.
- 10C. Tönshoff, H. F. Bettinger, Top. Curr. Chem. 2014, 349, 1–30.
- 11L. T. Scott, Angew. Chem. Int. Ed. 2004, 43, 4994–5007; Angew. Chem. 2004, 116, 5102–5116.
- 12A. Sygula, Eur. J. Org. Chem. 2011, 1611–1625.
- 13 Fragments of Fullerenes and Carbon Nanotubes: Designed Synthesis, Unusual Reactions, and Coordination Chemistry (Eds.: ), Wiley, Hoboken, 2011.
- 14M. Mojica, J. A. Alonso, F. Méndez, J. Phys. Org. Chem. 2013, 26, 526–539.
- 15J. Wu, W. Pisula, K. Müllen, Chem. Rev. 2007, 107, 718–747.
- 16K. Müllen, Adv. Polym. Sci. 2013, 262, 61–92.
- 17A. Narita, X.-Y. Wang, X. Feng, K. Müllen, Chem. Soc. Rev. 2015, 44, 6616–6643.
- 18A. Narita, X. Feng, K. Müllen, Chem. Rec. 2015, 15, 295–309.
- 19K. T. Kim, J. W. Lee, W. H. Jo, Macromol. Chem. Phys. 2013, 214, 2768–2773.
- 20T. H. Vo, M. Shekhirev, D. A. Kunkel, F. Orange, M. J.-F. Guinel, A. Enders, A. Sinitskii, Chem. Commun. 2014, 50, 4172–4174.
- 21R. Berger, A. Giannakopoulos, P. Ravat, M. Wagner, D. Beljonne, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2014, 53, 10520–10524; Angew. Chem. 2014, 126, 10688–10692.
- 22D. J. Dibble, Y. S. Park, A. Mazaheripour, M. J. Umerani, J. W. Ziller, A. A. Gorodetsky, Angew. Chem. Int. Ed. 2015, 54, 5883–5887; Angew. Chem. 2015, 127, 5981–5985.
- 23Q. Tan, S. Higashibayashi, S. Karanjit, H. Sakurai, Nat. Commun. 2012, 3, 891.
- 24S. Ito, Y. Tokimaru, K. Nozaki, Angew. Chem. Int. Ed. 2015, 54, 7256–7260; Angew. Chem. 2015, 127, 7364–7368.
- 25H. Yokoi, Y. Hiraoka, S. Hiroto, D. Sakamaki, S. Seki, H. Shinokubo, Nat. Commun. 2015, 6, 8215.
- 26U. H. F. Bunz, J. U. Engelhart, B. D. Lindner, M. Schaffroth, Angew. Chem. Int. Ed. 2013, 52, 3810–3821; Angew. Chem. 2013, 125, 3898–3910.
- 27U. H. F. Bunz, Acc. Chem. Res. 2015, 48, 1676–1686.
- 28J. C. Hummelen, C. Bellavia-Lund, F. Wudl, Top. Curr. Chem. 1999, 199, 93–134.
- 29O. Vostrowsky, A. Hirsch, Chem. Rev. 2006, 106, 5191–5207.
- 30H. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781–794.
- 31X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067–7098.
- 32Q. Miao, Synlett 2012, 23, 326–336.
- 33Q. Miao, Adv. Mater. 2014, 26, 5541–5549.
- 34R. Fittig, E. Ostermayer, Justus Liebigs Ann. Chem. 1873, 166, 361–382.
10.1002/jlac.18731660308 Google Scholar
- 35E. Clar, W. Willicks, J. Chem. Soc. 1958, 942–946.
- 36E. Clar, A. Guzzi, Ber. Dtsch. Chem. Ges. A/B 1932, 65, 1521–1525.
10.1002/cber.19320650856 Google Scholar
- 37E. Clar, W. Kelly, J. W. Wright, J. Chem. Soc. 1954, 1108–1111.
- 38L. S. Povarov, Russ. Chem. Rev. 1967, 36, 656–670.
10.1070/RC1967v036n09ABEH001680 Google Scholar
- 39V. V. Kouznetsov, Tetrahedron 2009, 65, 2721–2750.
- 40R. F. Heck, Org. React. 1982, 27, 345–390.
- 41 The Mizoroki-Heck Reaction (Ed.: ), Wiley, Chichester, 2009.
- 42A. Studer, D. P. Curran, Angew. Chem. Int. Ed. 2011, 50, 5018–5022; Angew. Chem. 2011, 123, 5122–5127.
- 43A. Studer, D. P. Curran, Nat. Chem. 2014, 6, 765–773.
- 44B. X. Mi, Z. Q. Gao, M. W. Liu, K. Y. Chan, H. L. Kwong, N. B. Wong, C. S. Lee, L. S. Hung, S. T. Lee, J. Mater. Chem. 2002, 12, 1307–1310.
- 45H. Lee, Y. Zhang, L. Zhang, T. Mirabito, E. K. Burnett, S. Trahan, A. R. Mohebbi, S. C. B. Mannsfeld, F. Wudl, A. L. Briseno, J. Mater. Chem. C 2014, 2, 3361–3366.
- 46H.-Y. Chen, J. Golder, S.-C. Yeh, C.-W. Lin, C.-T. Chen, C.-T. Chen, RSC Adv. 2015, 5, 3381–3385.
- 47D. J. Dibble, M. J. Umerani, A. Mazaheripour, Y. S. Park, J. W. Ziller, A. A. Gorodetsky, Macromolecules 2015, 48, 557–561.
- 48A. Mazaheripour, D. J. Dibble, M. J. Umerani, Y. S. Park, R. Lopez, D. Laidlaw, E. Vargas, J. W. Ziller, A. A. Gorodetsky, Org. Lett. 2016, DOI: 10.1021/acs.orglett.5b02939.
- 49R. Rohlmann, T. Stopka, H. Richter, O. García Mancheño, J. Org. Chem. 2013, 78, 6050–6064.
- 50A. R. Mohebbi, F. Wudl, Chem. Eur. J. 2011, 17, 2642–2646.
- 51A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., Wiley, New York, 2000.
- 52C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater. 2011, 23, 2367–2371.
- 53J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, X. Zhan, Adv. Mater. 2010, 22, 3876–3892.
- 54X. Gao, Y. Hu, J. Mater. Chem. C 2014, 2, 3099–3117.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.