Periodic Mesoporous Organosilica with Molecular-Scale Ordering Self-Assembled by Hydrogen Bonds
Corresponding Author
Dr. Norihiro Mizoshita
Toyota Central R&D Laboratories, Inc.
Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Nagakute, Aichi 480-1192 (Japan)
Toyota Central R&D Laboratories, Inc.Search for more papers by this authorCorresponding Author
Dr. Shinji Inagaki
Toyota Central R&D Laboratories, Inc.
Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Nagakute, Aichi 480-1192 (Japan)
Toyota Central R&D Laboratories, Inc.Search for more papers by this authorCorresponding Author
Dr. Norihiro Mizoshita
Toyota Central R&D Laboratories, Inc.
Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Nagakute, Aichi 480-1192 (Japan)
Toyota Central R&D Laboratories, Inc.Search for more papers by this authorCorresponding Author
Dr. Shinji Inagaki
Toyota Central R&D Laboratories, Inc.
Advanced Catalytic Transformation Program for Carbon Utilization (ACT-C), Japan Science and Technology Agency (JST), Nagakute, Aichi 480-1192 (Japan)
Toyota Central R&D Laboratories, Inc.Search for more papers by this authorAbstract
Nanoporous materials with functional frameworks have attracted attention because of their potential for various applications. Silica-based mesoporous materials generally consist of amorphous frameworks, whereas a molecular-scale lamellar ordering within the pore wall has been found for periodic mesoporous organosilicas (PMOs) prepared from bridged organosilane precursors. Formation of a “crystal-like” framework has been expected to significantly change the physical and chemical properties of PMOs. However, until now, there has been no report on other crystal-like arrangements. Here, we report a new molecular-scale ordering induced for a PMO. Our strategy is to form pore walls from precursors exhibiting directional H-bonding interaction. We demonstrate that the H-bonded organosilica columns are hexagonally packed within the pore walls. We also show that the H-bonded pore walls can stably accommodate H-bonding guest molecules, which represents a new method of modifying the PMO framework.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201505538_sm_miscellaneous_information.pdf1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angew. Chem. Int. Ed. 2006, 45, 3216–3251; Angew. Chem. 2006, 118, 3290–3328;
- 1bW. Wang, J. E. Lofgreen, G. A. Ozin, Small 2010, 6, 2634–2642;
- 1cF. Hoffmann, M. Fröba, Chem. Soc. Rev. 2011, 40, 608–620;
- 1dN. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789–800;
- 1eS. S. Park, M. S. Moorthy, C.-S. Ha, NPG Asia Mater. 2014, 6, e 96; DOI: 10.1038/am.2014.13.
- 2
- 2aV. Rebbin, R. Schmidt, M. Fröba, Angew. Chem. Int. Ed. 2006, 45, 5210–5214; Angew. Chem. 2006, 118, 5335–5339;
- 2bM. Waki, N. Mizoshita, T. Ohsuna, T. Tani, S. Inagaki, Chem. Commun. 2010, 46, 8163–8165.
- 3
- 3aQ. Yang, J. Liu, L. Zhang, C. Li, J. Mater. Chem. 2009, 19, 1945–1955;
- 3bS. Shylesh, A. Wagener, A. Seifert, S. Ernst, W. R. Thiel, Angew. Chem. Int. Ed. 2010, 49, 184–187; Angew. Chem. 2010, 122, 188–191;
- 3cH. Yang, X. Han, G. Li, Z. Ma, Y. Hao, J. Phys. Chem. C 2010, 114, 22221–22229;
- 3dS. El Hankari, B. Motos-Pérez, P. Hesemann, A. Bouhaouss, J. J. E. Moreau, J. Mater. Chem. 2011, 21, 6948–6955;
- 3eY. Maegawa, S. Inagaki, Dalton Trans. 2015, 44, 13007–13016.
- 4
- 4aD. Chandra, T. Yokoi, T. Tatsumi, A. Bhaumik, Chem. Mater. 2007, 19, 5347–5354;
- 4bN. Mizoshita, Y. Goto, T. Tani, S. Inagaki, Adv. Funct. Mater. 2008, 18, 3699–3705;
- 4cN. Mizoshita, Y. Goto, Y. Maegawa, T. Tani, S. Inagaki, Chem. Mater. 2010, 22, 2548–2554;
- 4dY. Maegawa, N. Mizoshita, T. Tani, S. Inagaki, J. Mater. Chem. 2010, 20, 4399–4403.
- 5
- 5aJ. Croissant, D. Salles, M. Maynadier, O. Mongin, V. Hugues, M. Blanchard-Desce, X. Cattoën, M. Wong Chi Man, A. Gallud, M. Garcia, M. Gary-Bobo, L. Raehm, J.-O. Durand, Chem. Mater. 2014, 26, 7214–7220;
- 5bX. Wang, D. Lu, R. Austin, A. Agarwal, L. J. Mueller, Z. Liu, J. Wu, P. Feng, Langmuir 2007, 23, 5735–5739.
- 6
- 6aN. Mizoshita, M. Ikai, T. Tani, S. Inagaki, J. Am. Chem. Soc. 2009, 131, 14225–14227;
- 6bN. Mizoshita, K. Yamanaka, T. Shimada, T. Tani, S. Inagaki, Chem. Commun. 2010, 46, 9235–9237;
- 6cY. Li, F. Auras, F. Löbermann, M. Döblinger, J. Schuster, L. Peter, D. Trauner, T. Bein, J. Am. Chem. Soc. 2013, 135, 18513–18519;
- 6dM. Ikai, Y. Maegawa, Y. Goto, T. Tani, S. Inagaki, J. Mater. Chem. A 2014, 2, 11857–11865.
- 7
- 7aS. Inagaki, O. Ohtani, Y. Goto, K. Okamoto, M. Ikai, K. Yamanaka, T. Tani, T. Okada, Angew. Chem. Int. Ed. 2009, 48, 4042–4046; Angew. Chem. 2009, 121, 4102–4106;
- 7bN. Mizoshita, Y. Goto, T. Tani, S. Inagaki, Adv. Mater. 2009, 21, 4798–4801;
- 7cY. Yamamoto, H. Takeda, T. Yui, Y. Ueda, K. Koide, S. Inagaki, O. Ishitani, Chem. Sci. 2014, 5, 639–648.
- 8S. Inagaki, S. Guan, T. Ohsuna, O. Terasaki, Nature 2002, 416, 304–307.
- 9M. P. Kapoor, Q. Yang, S. Inagaki, J. Am. Chem. Soc. 2002, 124, 15176–15177.
- 10A. Sayari, W. Wang, J. Am. Chem. Soc. 2005, 127, 12194–12195.
- 11M. Cornelius, F. Hoffmann, M. Fröba, Chem. Mater. 2005, 17, 6674–6678.
- 12Y. Xia, W. Wang, R. Mokaya, J. Am. Chem. Soc. 2005, 127, 790–798.
- 13N. Mizoshita, Y. Goto, M. P. Kapoor, T. Shimada, T. Tani, S. Inagaki, Chem. Eur. J. 2009, 15, 219–226.
- 14M. Beretta, J. Morell, P. Sozzani, M. Fröba, Chem. Commun. 2010, 46, 2495–2497.
- 15M. Waki, Y. Maegawa, K. Hara, Y. Goto, S. Shirai, Y. Yamada, N. Mizoshita, T. Tani, W.-J. Chun, S. Muratsugu, M. Tada, A. Fukuoka, S. Inagaki, J. Am. Chem. Soc. 2014, 136, 4003–4011.
- 16
- 16aS. Bracco, A. Comotti, P. Valsesia, B. F. Chmelka, P. Sozzani, Chem. Commun. 2008, 4798–4800;
- 16bA. Comotti, S. Bracco, P. Valsesia, M. Beretta, P. Sozzani, Angew. Chem. Int. Ed. 2010, 49, 1760–1764; Angew. Chem. 2010, 122, 1804–1808;
- 16cS. Bracco, M. Beretta, A. Cattaneo, A. Comotti, A. Falqui, K. Zhao, C. Rogers, P. Sozzani, Angew. Chem. Int. Ed. 2015, 54, 4773–4777; Angew. Chem. 2015, 127, 4855–4859.
- 17K. Okamoto, Y. Goto, S. Inagaki, J. Mater. Chem. 2005, 15, 4136–4140.
- 18N. Mizoshita, T. Tani, H. Shinokubo, S. Inagaki, Angew. Chem. Int. Ed. 2012, 51, 1156–1160; Angew. Chem. 2012, 124, 1182–1186.
- 19
- 19aK. Hanabusa, A. Kawakami, M. Kimura, H. Shirai, Chem. Lett. 1997, 191–192;
- 19bL. Sardone, V. Palermo, E. Devaux, D. Credgington, M. de Loos, G. Marletta, F. Cacialli, J. van Esch, P. Samorí, Adv. Mater. 2006, 18, 1276–1280;
- 19cJ. Boekhoven, J. M. Poolman, C. Maity, F. Li, L. van der Mee, C. B. Minkenberg, E. Mendes, J. H. van Esch, R. Eelkema, Nat. Chem. 2013, 5, 433–437.
- 20
- 20aA. H. Latham, M. E. Williams, Langmuir 2006, 22, 4319–4326;
- 20bW. Biesta, B. van Lagen, V. S. Gevaert, A. T. M. Marcelis, J. M. J. Paulusse, M. W. F. Nielen, H. Zuilhof, Chem. Mater. 2012, 24, 4311–4318.
- 21O. Martín, F. Mendicuti, E. Saiz, W. L. Mattice, J. Polym. Sci. Part B 1999, 37, 253–266.
- 22Immersion of the 2-doped PMOs in DMSO at 80 °C resulted in collapse of the periodic mesostructures presumably due to the dissociation of hydrogen bonds within the framework. In this case, guest molecule 2 was completely extracted into DMSO. The amount of extracted 2 was quantified by UV/Vis spectroscopy and direct measurements of the weight loss of the powders. Both measurements indicated that 3.8 mg of 2 was contained in 20 mg of the PMO synthesized using 10 mol % 2.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.