Two-Dimensional Boron Monolayers Mediated by Metal Substrates
Dr. Zhuhua Zhang
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorYang Yang
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorGuoying Gao
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorCorresponding Author
Prof. Boris I. Yakobson
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)Search for more papers by this authorDr. Zhuhua Zhang
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorYang Yang
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorGuoying Gao
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Search for more papers by this authorCorresponding Author
Prof. Boris I. Yakobson
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)
Department of Materials Science and NanoEngineering, Department of Chemistry, and the Smalley Institute, Rice University, Houston, TX 77005 (USA)Search for more papers by this authorAbstract
Two-dimensional (2D) materials, such as graphene and boron nitride, have specific lattice structures independent of external conditions. In contrast, the structure of 2D boron sensitively depends on metal substrate, as we show herein using the cluster expansion method and a newly developed surface structure-search method, both based on first-principles calculations. The preferred 2D boron on weaker interacting Au is nonplanar with significant buckling and numerous polymorphs as in vacuum, whereas on more reactive Ag, Cu, and Ni, the polymorphic energy degeneracy is lifted and a particular planar structure is found to be most stable. We also show that a layer composed of icosahedral B12 is unfavorable on Cu and Ni but unexpectedly becomes a possible minimum on Au and Ag. The substrate-dependent 2D boron choices originate from a competition between the strain energy of buckling and chemical energy of electronic hybridization between boron and metal.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201505425_sm_miscellaneous_information.pdf3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. Ogitsu, E. Schwegler, G. Galli, Chem. Rev. 2013, 113, 3425–3449;
- 1bB. Albert, H. Hillebrecht, Angew. Chem. Int. Ed. 2009, 48, 8640–8668; Angew. Chem. 2009, 121, 8794–8824.
- 2
- 2aJ. He, E. Wu, H. Wang, R. Liu, Y. Tian, Phys. Rev. Lett. 2005, 94, 015504;
- 2bA. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, V. L. Solozhenko, Nature 2009, 457, 863–867.
- 3
- 3aD. L. Prasad, E. D. Jemmis, Phys. Rev. Lett. 2008, 100, 165504;
- 3bT. R. Galeev, C. Romanescu, W. L. Li, L. S. Wang, A. I. Boldyrev, Angew. Chem. Int. Ed. 2012, 51, 2101–2105; Angew. Chem. 2012, 124, 2143–2147;
- 3cH. Li, N. Shao, B. Shang, L.-F. Yuan, J. Yang, X. C. Zeng, Chem. Commun. 2010, 46, 3878–3880;
- 3dL. Wang, J. Zhao, F. Li, Z. Chen, Chem. Phys. Lett. 2010, 501, 16–19;
- 3eJ. Zhao, L. Wang, F. Li, Z. Chen, J. Phys. Chem. A 2010, 114, 9969–9972;
- 3fW. Huang, A. P. Sergeeva, H.-J. Zhai, B. B. Averkiev, L.-S. Wang, A. I. Boldyrev, Nat. Chem. 2010, 2, 202–206;
- 3gZ. A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Nat. Commun. 2014, 5, 3113;
- 3hH.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z. A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Nat. Chem. 2014, 6, 727–731;
- 3iA. P. Sergeeva, I. A. Popov, Z. A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, A. I. Boldyrev, Acc. Chem. Res. 2014, 47, 1349–1358;
- 3jE. Oger, N. R. Crawford, R. Kelting, P. Weis, M. M. Kappes, R. Ahlrichs, Angew. Chem. Int. Ed. 2007, 46, 8503–8506; Angew. Chem. 2007, 119, 8656–8659;
- 3kB. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X. C. Zeng, L.-S. Wang, Proc. Natl. Acad. Sci. USA 2005, 102, 961–964.
- 4
- 4aD. Ciuparu, R. F. Klie, Y. Zhu, L. Pfefferle, J. Phys. Chem. B 2004, 108, 3967–3969;
- 4bF. Liu, C. Shen, Z. Su, X. Ding, S. Deng, J. Chen, N. Xu, H. Gao, J. Mater. Chem. 2010, 20, 2197–2205;
- 4cV. Bezugly, J. Kunstmann, B. Grundkötter-Stock, T. Frauenheim, T. Niehaus, G. Cuniberti, ACS Nano 2011, 5, 4997–5005;
- 4dJ. Tian, Z. Xu, C. Shen, F. Liu, N. Xu, H.-J. Gao, Nanoscale 2010, 2, 1375–1389;
- 4eJ. Kunstmann, V. Bezugly, H. Rabbel, M. H. Rümmeli, G. Cuniberti, Adv. Funct. Mater. 2014, 24, 4127–4134.
- 5C. J. Otten, O. R. Lourie, M.-F. Yu, J. M. Cowley, M. J. Dyer, R. S. Ruoff, W. E. Buhro, J. Am. Chem. Soc. 2002, 124, 4564–4565.
- 6
- 6aX. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X. C. Zeng, ACS Nano 2012, 6, 7443–7453;
- 6bX. Yang, Y. Ding, J. Ni, Phys. Rev. B 2008, 77, 041402;
- 6cH. Tang, S. Ismail-Beigi, Phys. Rev. B 2010, 82, 115412;
- 6dJ. Miller, Phys. Today 2007, 60, 20–21;
- 6eX.-F. Zhou, X. Dong, A. R. Oganov, Q. Zhu, Y. Tian, H.-T. Wang, Phys. Rev. Lett. 2014, 112, 085502.
- 7H. Tang, S. Ismail-Beigi, Phys. Rev. Lett. 2007, 99, 115501.
- 8
- 8aA. Sadrzadeh, O. V. Pupysheva, A. K. Singh, B. I. Yakobson, J. Phys. Chem. A 2008, 112, 13679–13683;
- 8bN. G. Szwacki, A. Sadrzadeh, B. I. Yakobson, Phys. Rev. Lett. 2007, 98, 166804;
- 8cX.-Q. Wang, Phys. Rev. B 2010, 82, 153409.
- 9
- 9aA. K. Singh, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2008, 8, 1314–1317;
- 9bE. S. Penev, V. I. Artyukhov, F. Ding, B. I. Yakobson, Adv. Mater. 2012, 24, 4956–4976.
- 10
- 10aA. P. Sergeeva, Z. A. Piazza, C. Romanescu, W.-L. Li, A. I. Boldyrev, L.-S. Wang, J. Am. Chem. Soc. 2012, 134, 18065–18073;
- 10bW.-L. Li, C. Romanescu, T. Jian, L.-S. Wang, J. Am. Chem. Soc. 2012, 134, 13228–13231.
- 11E. S. Penev, S. Bhowmick, A. Sadrzadeh, B. I. Yakobson, Nano Lett. 2012, 12, 2441–2445.
- 12T. R. Galeev, Q. Chen, J.-C. Guo, H. Bai, C.-Q. Miao, H.-G. Lu, A. P. Sergeeva, S.-D. Li, A. I. Boldyrev, Phys. Chem. Chem. Phys. 2011, 13, 11575–11578.
- 13M. Evans, J. Joannopoulos, S. Pantelides, Phys. Rev. B 2005, 72, 045434.
- 14
- 14aX. Zhang, H. Li, F. Ding, Adv. Mater. 2014, 26, 5488–5495;
- 14bA. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2008, 9, 30–35.
- 15
- 15aY. Liu, E. S. Penev, B. I. Yakobson, Angew. Chem. Int. Ed. 2013, 52, 3156–3159; Angew. Chem. 2013, 125, 3238–3241;
- 15bH. Liu, J. Gao, J. Zhao, Sci. Rep. 2013, 3, 3238.
- 16
- 16aX. Yu, L. Li, X.-W. Xu, C.-C. Tang, J. Phys. Chem. C 2012, 116, 20075–20079;
- 16bH. Lu, Y. Mu, H. Bai, Q. Chen, S.-D. Li, J. Chem. Phys. 2013, 138, 024701.
- 17J. M. Sanchez, F. Ducastelle, D. Gratias, Physica A 1984, 128, 334–350.
- 18
- 18aB. Huang, H. Xiang, Q. Xu, S.-H. Wei, Phys. Rev. Lett. 2013, 110, 085501;
- 18bA. Kutana, E. S. Penev, B. I. Yakobson, Nanoscale 2014, 6, 5820–5825.
- 19A. Van de Walle, M. Asta, G. Ceder, CALPHAD Comput. Coupling Phase Diagrams Thermochem 2002, 26, 539–553.
- 20
- 20aG. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251;
- 20bG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- 21S. Lu, Y. Wang, H. Liu, M.-s. Miao, Y. Ma, Nat. Commun. 2014, 5, 3666.
- 22Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 2010, 82, 094116.
- 23J. Paier, R. Hirschl, M. Marsman, G. Kresse, J. Chem. Phys. 2005, 122, 234102.
- 24L. Zhang, Q. Yan, S. Du, G. Su, H.-J. Gao, J. Phys. Chem. C 2012, 116, 18202–18206.
- 25B. Hammer, J. Nørskov, Nature 1995, 376, 238–240.
- 26K. C. Lau, R. Pandey, J. Phys. Chem. C 2007, 111, 2906–2912.
- 27B. Decker, J. Kasper, Acta Crystallogr. 1959, 12, 503–506.
- 28L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 2015, 10, 227–231.
- 29B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308–5309.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.