Utilizing Reversible Interactions in Polymeric Nanoparticles To Generate Hollow Metal–Organic Nanoparticles
Longyu Li
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorDr. Conghui Yuan
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
College of Materials, Xiamen University, Xiamen, 361005 (P.R. China)
Search for more papers by this authorDongming Zhou
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorDr. Alexander E. Ribbe
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003 (USA)
Search for more papers by this authorProf. Kevin R. Kittilstved
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorCorresponding Author
Prof. S. Thayumanavan
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)Search for more papers by this authorLongyu Li
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorDr. Conghui Yuan
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
College of Materials, Xiamen University, Xiamen, 361005 (P.R. China)
Search for more papers by this authorDongming Zhou
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorDr. Alexander E. Ribbe
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003 (USA)
Search for more papers by this authorProf. Kevin R. Kittilstved
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Search for more papers by this authorCorresponding Author
Prof. S. Thayumanavan
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)
Department of Chemistry, University of Massachusetts, Amherst, MA 01003-9336 (USA)Search for more papers by this authorAbstract
The use of reversible linkers in polymers has been of interest mainly for biomedical applications. Herein, we present a novel strategy to utilize reversible interactions in polymeric nanoparticles to generate hollow metal–organic nanoparticles (MOPs). These hollow MOPs are synthesized from self-assembled polymeric nanoparticles using a simple metal–comonomer exchange process in a single step. The control over the size of the polymer precursor particles translates into a straightforward opportunity for controlling MOP sizes. The shell thickness of the MOPs could be easily tuned by the concentration of metal ions in solution. The underlying mechanism for the formation of these hollow MOPs has been proposed. Evidence for the generality of the method is provided by its application to a variety of metal ions with different coordination geometries.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201505242_sm_miscellaneous_information.pdf11.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. R. Martin, Science 1994, 266, 1961–1966;
- 1bY. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 2001, 291, 630–633;
- 1cT. Suteewong, H. Sai, R. Hovden, D. Muller, M. S. Bradbury, S. M. Gruner, U. Wiesner, Science 2013, 340, 337–341.
- 2
- 2aX. Wang, J. Zhuang, Q. Peng, Y. Li, Nature 2005, 437, 121–124;
- 2bP. D. Howes, R. Chandrawati, M. M. Stevens, Science 2014, 346, 1247390.
- 3
- 3aR. Savić, L. Luo, A. Eisenberg, D. Maysinger, Science 2003, 300, 615–618;
- 3bJ. T. A. Jones, T. Hasell, X. Wu, J. Bacsa, K. E. Jelfs, M. Schmidtmann, S. Y. Chong, D. J. Adams, A. Trewin, F. Schiffman, F. Cora, B. Slater, A. Steiner, G. M. Day, A. I. Cooper, Nature 2011, 474, 367–371;
- 3cJ.-H. Ryu, R. Chacko, S. Jiwpanich, S. Bickerton, R. P. Babu, S. Thayumanavan, J. Am. Chem. Soc. 2010, 132, 17227–17235;
- 3dL. Li, K. Raghupathi, C. Yuan, S. Thayumanavan, Chem. Sci. 2013, 4, 3654–3660.
- 4
- 4aH. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013, 341, 1230444;
- 4bM. Oh, C. A. Mirkin, Nature 2005, 438, 651–654;
- 4cA. M. Spokoyny, D. Kim, A. Sumrein, C. A. Mirkin, Chem. Soc. Rev. 2009, 38, 1218–1227;
- 4dA. Carné, C. Carbonell, I. Imaz, D. Maspoch, Chem. Soc. Rev. 2011, 40, 291–305.
- 5
- 5aJ. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982–986;
- 5bR. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Science 2008, 319, 939–943;
- 5cP. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris, C. Serre, Chem. Rev. 2012, 112, 1232–1268.
- 6R. Ameloot, F. Vermoortele, W. Vanhove, M. B. J. Roeffaers, B. F. Sels, D. E. De Vos, Nat. Chem. 2011, 3, 382–387.
- 7A. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, Nat. Chem. 2013, 5, 203–211.
- 8aM. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng, M. Eddaoudi, J. Am. Chem. Soc. 2013, 135, 10234–10237;
- 8bZ. Zhang, Y. Chen, S. He, J. Zhang, X. Xu, Y. Yang, F. Nosheen, F. Saleem, W. He, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 12517–12521; Angew. Chem. 2014, 126, 12725–12729.
- 9J. Huo, L. Wang, E. Irran, H. Yu, J. Gao, D. Fan, B. Li, J. Wang, W. Ding, A. M. Amin, C. Li, L. Ma, Angew. Chem. Int. Ed. 2010, 49, 9237–9241; Angew. Chem. 2010, 122, 9423–9427.
- 10aH. Ejima, J. J. Richardson, K. Liang, J. P. Best, M. P. van Koeverden, G. K. Such, J. Cui, F. Caruso, Science 2013, 341, 154–157;
- 10bZ. Zhang, Y. Chen, X. Xu, J. Zhang, G. Xiang, W. He, X. Wang, Angew. Chem. Int. Ed. 2014, 53, 429–433; Angew. Chem. 2014, 126, 439–443;
- 10cF. Zhang, Y. Wei, X. Wu, H. Jiang, W. Wang, H. Li, J. Am. Chem. Soc. 2014, 136, 13963–13966.
- 11
- 11aF. Caruso, R. A. Caruso, H. Möhwald, Science 1998, 282, 1111–1114;
- 11bY. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science 2004, 304, 711–714;
- 11cM. H. Oh, T. Yu, S.-H. Yu, B. Lim, K.-T. Ko, M.-G. Willinger, D.-H. Seo, B. H. Kim, M. G. Cho, J.-H. Park, Science 2013, 340, 964–968;
- 11dX. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater. 2006, 18, 2325–2329.
- 12L. Li, C. Yuan, L. Dai, S. Thayumanavan, Macromolecules 2014, 47, 5869–5876.
- 13J. T. Weisser, M. J. Nilges, M. J. Sever, J. J. Wilker, Inorg. Chem. 2006, 45, 7736–7747.
- 14Y. A. Koksharov, S. P. Gubin, I. D. Kosobudsky, M. Beltran, Y. Khodorkovsky, A. M. Tishin, J. Appl. Phys. 2000, 88, 1587–1592.
- 15V. N. Nikiforov, Y. A. Koksharov, S. N. Polyakov, A. P. Malakho, A. V. Volkov, M. A. Moskvina, G. B. Khomutov, V. Y. Irkhin, J. Alloys Compd. 2013, 569, 58–61.
- 16
- 16aM. J. Sever, J. T. Weisser, J. Monahan, S. Srinivasan, J. J. Wilker, Angew. Chem. Int. Ed. 2004, 43, 448–450; Angew. Chem. 2004, 116, 454–456;
- 16bM. J. Sever, J. J. Wilker, Dalton Trans. 2006, 813–822.
- 17E. Kirkendall, AIME Trans. 1942, 147, 104–109.
- 18Y. Yin, C. K. Erdonmez, A. Cabot, S. Hughes, A. P. Alivisatos, Adv. Funct. Mater. 2006, 16, 1389–1399.
- 19H. J. Lee, S. Choi, M. Oh, Chem. Commun. 2014, 50, 4492–4495.
- 20C. J. Hawker, K. L. Wooley, Science 2005, 309, 1200–1205.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.