Stimuliresponsive DNA-funktionalisierte Nano- und Mikrocontainer zur schaltbaren und kontrollierten Freisetzung
Dr. Chun-Hua Lu
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/Search for more papers by this authorDr. Chun-Hua Lu
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/
Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel) http://chem.ch.huji.ac.il/willner/Search for more papers by this authorAbstract
Stimuliresponsive DNA-funktionalisierte Nano- und Mikrocontainer, die aus mesoporösen SiO2-Nanopartikeln (SiO2-NPs), Mikrokapseln oder Micellen/Vesikeln bestehen, fungieren als Träger zur Freisetzung von Wirkstoffen. Die in den DNA-Sequenzen gespeicherte Information liefert den Code für die Ver- und Entriegelung der wirkstoffbeladenen Poren mesoporöser SiO2-NPs, für den Auf- und Abbau von Mikrokapseln oder Lipid-DNA-Micellen bzw. Lipid-DNA-Vesikeln und für den gezielten Transport von Nano- und Mikrocontainern zu Krebszellen. Es werden verschiedene Trigger eingesetzt, um die in den Nano- und Mikrocontainern enthaltenen Wirkstoffe durch Entriegelung der Poren der mesoporösen SiO2-NPs oder durch Abbau der Container freizusetzen. Hierzu gehören schaltbare DNA-Nanostrukturen (Nukleinsäure-Haarnadeln, i-Motive, G-Quadruplexe) und die Anwendung chemischer, thermischer oder photonischer Stimuli. Außerdem werden durch DNAzyme oder Enzyme stimulierte katalytische Prozesse genutzt, um die Wirkstoffe aus den Nano- und Mikrocontainern freizusetzen.
References
- 1F. Wang, C. H. Lu, I. Willner, Chem. Rev. 2014, 114, 2881–2941.
- 2
- 2aK. Gehring, J. L. Leroy, M. Guéron, Nature 1993, 363, 561–565;
- 2bJ. L. Leroy, M. Gueron, J. L. Mergny, C. Helene, Nucleic Acids Res. 1994, 22, 1600–1606;
- 2cS. Nonin, J. L. Leroy, J. Mol. Biol. 1996, 261, 399–414;
- 2dD. Collin, K. Gehring, J. Am. Chem. Soc. 1998, 120, 4069–4072.
- 3
- 3aD. Sen, W. Gilbert, Nature 1988, 334, 364–366;
- 3bT. Simonsson, Biol. Chem. 2001, 382, 621–628;
- 3cS. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, S. Neidle, Nucleic Acids Res. 2006, 34, 5402–5415;
- 3dJ. T. Davis, G. P. Spada, Chem. Soc. Rev. 2007, 36, 296–313;
- 3eG. W. Collie, G. N. Parkinson, Chem. Soc. Rev. 2011, 40, 5867–5892.
- 4
- 4aV. Sklenar, J. Feigon, Nature 1990, 345, 836–838;
- 4bR. Haner, P. B. Dervan, Biochemistry 1990, 29, 9761–9765;
- 4cJ. Völker, D. P. Botes, G. G. Lindsey, H. H. Klump, J. Mol. Biol. 1993, 230, 1278–1290;
- 4dD. Leitner, W. Schroder, K. Weisz, Biochemistry 2000, 39, 5886–5892;
- 4eA. Soto, J. Loo, L. Marky, J. Am. Chem. Soc. 2002, 124, 14355–14363;
- 4fY. Chen, S. H. Lee, C. Mao, Angew. Chem. Int. Ed. 2004, 43, 5335–5338; Angew. Chem. 2004, 116, 5449–5452.
- 5
- 5aY. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kudo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, A. Ono, J. Am. Chem. Soc. 2006, 128, 2172–2173;
- 5bY. Tanaka, S. Oda, H. Yamaguchi, Y. Kondo, C. Kojima, A. Ono, J. Am. Chem. Soc. 2007, 129, 244–245;
- 5cS. He, D. Li, C. Zhu, S. Song, L. Wang, Y. Long, C. Fan, Chem. Commun. 2008, 4885–4887;
- 5dC. W. Liu, Y. T. Hsieh, C. C. Huang, H. T. Chang, Chem. Commun. 2008, 2242–2244;
- 5eZ. Zhu, Y. Su, J. Li, D. Li, J. Zhang, S. Song, Y. Zhao, G. Li, C. Fan, Anal. Chem. 2009, 81, 7660–7666;
- 5fT. Li, S. Dong, E. Wang, Anal. Chem. 2009, 81, 2144–2149.
- 6
- 6aC. K. Chiang, C. C. Huang, C. W. Liu, H. T. Chang, Anal. Chem. 2008, 80, 3716–3721;
- 6bA. Ono, S. Q. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Commun. 2008, 4825–4827;
- 6cR. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 2009, 48, 7818–7821; Angew. Chem. 2009, 121, 7958–7961;
- 6dY. Wen, F. Xing, S. He, S. Song, L. Wang, Y. Long, D. Li, C. Fan, Chem. Commun. 2010, 46, 2596–2598;
- 6eK. S. Park, C. Jung, H. G. Park, Angew. Chem. Int. Ed. 2010, 49, 9757–9760; Angew. Chem. 2010, 122, 9951–9954.
- 7
- 7aJ. SantaLucia, D. Hicks, Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 415–440;
- 7bD. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree, Science 2007, 318, 1121–1125;
- 7cD. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 2009, 131, 17303–17314;
- 7dD. Soloveichik, G. Seelig, E. Winfree, Proc. Natl. Acad. Sci. USA 2010, 107, 5393–5398;
- 7eD. Y. Zhang, G. Seelig, Nat. Chem. 2011, 3, 103–113.
- 8
- 8aS. Tyagi, F. Kramer, Nat. Biotechnol. 1996, 14, 303–308;
- 8bJ. Li, X. Fang, S. Schuster, W. Tan, Angew. Chem. Int. Ed. 2000, 39, 1049–1052;
10.1002/(SICI)1521-3773(20000317)39:6<1049::AID-ANIE1049>3.0.CO;2-2 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 1091–1094;
- 8cP. Zhang, T. Beck, W. Tan, Angew. Chem. Int. Ed. 2001, 40, 402–405;
10.1002/1521-3773(20010119)40:2<402::AID-ANIE402>3.0.CO;2-I CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 416–419;
- 8dK. Fujimoto, H. Shimizu, M. Inouye, J. Org. Chem. 2004, 69, 3271–3275;
- 8eI. Nesterova, S. Erdem, S. Pakhomov, R. Hammer, S. Soper, J. Am. Chem. Soc. 2009, 131, 2432–2433;
- 8fS. Song, Z. Liang, J. Zhang, L. Wang, G. Li, C. Fan, Angew. Chem. Int. Ed. 2009, 48, 8670–8674; Angew. Chem. 2009, 121, 8826–8830;
- 8gR. Häner, S. Biner, S. Langenegger, T. Meng, V. Malinovskii, Angew. Chem. Int. Ed. 2010, 49, 1227–1230; Angew. Chem. 2010, 122, 1249–1252;
- 8hA. Jayagopal, K. Halfpenny, J. Perez, D. Wright, J. Am. Chem. Soc. 2010, 132, 9789–9796.
- 9
- 9aD. Liu, S. Balasubramanian, Angew. Chem. Int. Ed. 2003, 42, 5734–5736; Angew. Chem. 2003, 115, 5912–5914;
- 9bS. Modi, M. G. Swetha, D. Goswami, G. D. Gupta, S. Mayor, Y. Krishnan, Nat. Nanotechnol. 2009, 4, 325–330;
- 9cA. Idili, A. Vallée-Bélisle, F. Ricci, J. Am. Chem. Soc. 2014, 136, 5836–9583;
- 9dT. Li, M. Famulok, J. Am. Chem. Soc. 2013, 135, 1593–1599.
- 10
- 10aS. Shimron, J. Elbaz, A. Henning, I. Willner, Chem. Commun. 2010, 46, 3250–3252;
- 10bC. H. Lu, X. J. Qi, R. Orbach, H. H. Yang, I. Mironi-Harpaz, D. Seliktar, I. Willner, Nano Lett. 2013, 13, 1298–1302;
- 10cW. Guo, X. J. Qi, R. Orbach, C. H. Lu, L. Freage, I. Mironi-Harpaz, D. Seliktar, H. H. Yang, I. Willner, Chem. Commun. 2014, 50, 4065–4068.
- 11
- 11aH. Asanuma, T. Takarada, T. Yoshida, D. Tamaru, X. Liang, M. Komiyama, Angew. Chem. Int. Ed. 2001, 40, 2671–2673;
10.1002/1521-3773(20010716)40:14<2671::AID-ANIE2671>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2743–2745;
- 11bH. Kashida, T. Fujii, H. Asanuma, Org. Biomol. Chem. 2008, 6, 2892–2899;
- 11cX. Liang, T. Mochizuki, H. Asanuma, Small 2009, 5, 1761–1768.
- 12
- 12aJ. F. Lee, G. M. Stovall, A. D. Ellington, Curr. Opin. Struct. Biol. 2006, 10, 282–289;
- 12bI. Willner, M. Zayats, Angew. Chem. Int. Ed. 2007, 46, 6408–6418; Angew. Chem. 2007, 119, 6528–6538;
- 12cA. A. Goulko, F. Li, X. C. Le, TrAC Trends Anal. Chem. 2009, 28, 878–892;
- 12dM. Famulok, G. Mayer, Acc. Chem. Res. 2011, 44, 1349–1358.
- 13
- 13aC. Tuerk, L. Gold, Science 1990, 249, 505–510;
- 13bA. D. Ellington, J. W. Szostak, Nature 1990, 346, 818–822;
- 13cS. E. Osborne, A. D. Ellington, Chem. Rev. 1997, 97, 349–370.
- 14
- 14aR. R. Breaker, G. F. Joyce, Chem. Biol. 1994, 1, 223–229;
- 14bG. F. Joyce, Annu. Rev. Biochem. 2004, 73, 791–836;
- 14cM. Famulok, J. S. Hartig, G. Mayer, Chem. Rev. 2007, 107, 3715–3743;
- 14dG. F. Joyce, Angew. Chem. Int. Ed. 2007, 46, 6420–6436; Angew. Chem. 2007, 119, 6540–6557;
- 14eI. Willner, B. Shlyahovsky, M. Zayats, B. Willner, Chem. Soc. Rev. 2008, 37, 1153–1165.
- 15
- 15aP. Travascio, Y. Li, D. Sen, Chem. Biol. 1998, 5, 505–517;
- 15bP. Travascio, A. J. Bennet, D. Y. Wang, D. Sen, Chem. Biol. 1999, 6, 779–787;
- 15cP. Travascio, P. K. Witting, A. G. Mauk, D. Sen, J. Am. Chem. Soc. 2001, 123, 1337–1348.
- 16
- 16aR. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, H. A. Erlich, Science 1988, 239, 487–491;
- 16bA. R. Pavlov, N. V. Pavlova, S. A. Kozyavkin, A. I. Slesarev, Trends Biotechnol. 2004, 22, 253–260;
- 16cQ. Guo, X. Yang, K. Wang, W. Tan, W. Li, H. Tang, H. Li, Nucleic Acids Res. 2009, 37, e 20.
- 17
- 17aP. Widlak, W. T. Garrard, J. Cell. Biochem. 2005, 94, 1078–1087;
- 17bB. L. Stoddard, Q. Rev. Biophys. 2005, 38, 49–95;
- 17cK. Calvin, H. Li, Cell. Mol. Life Sci. 2008, 65, 1176–1185.
- 18
- 18aY. Weizmann, M. K. Beissenhirtz, Z. Cheglakov, R. Nowarski, M. Kotler, I. Willner, Angew. Chem. Int. Ed. 2006, 45, 7384–7388; Angew. Chem. 2006, 118, 7544–7548;
- 18bB. Shlyahovsky, D. Li, Y. Weizmann, R. Nowarski, M. Kotler, I. Willner, J. Am. Chem. Soc. 2007, 129, 3814–3815;
- 18cD. Li, A. Wieckowska, I. Willner, Angew. Chem. Int. Ed. 2008, 47, 3927–3931; Angew. Chem. 2008, 120, 3991–3995.
- 19
- 19aD. Mukherjee, D. T. Fritz, W. J. Kilpatrick, M. Gao, J. Wilusz, Methods Mol. Biol. 2004, 257, 193–212;
- 19bS. West, N. Gromak, N. J. Proudfoot, Nature 2004, 432, 522–525.
- 20F. Wang, X. Liu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 1098–1129; Angew. Chem. 2015, 127, 1112–1144.
- 21
- 21aH. Yan, X. Zhang, Z. Shen, N. C. Seeman, Nature 2002, 415, 62–65;
- 21bN. C. Seeman, Trends Biochem. Sci. 2005, 30, 119–125;
- 21cF. Wang, B. Willner, I. Willner, Top. Curr. Chem. 2014, 354, 279–338;
- 21dM. K. Beissenhirtz, I. Willner, Org. Biomol. Chem. 2006, 4, 3392–3401;
- 21eJ. Bath, A. J. Turberfield, Nat. Nanotechnol. 2007, 2, 275–284;
- 21fC. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376–391;
- 21gY. Krishnan, F. C. Simmel, Angew. Chem. Int. Ed. 2011, 50, 3124–3156; Angew. Chem. 2011, 123, 3180–3215.
- 22
- 22aI. Willner, B. Willner, Nano Lett. 2010, 10, 3805–3815;
- 22bF. Li, Y. Huang, Q. Yang, Z. Zhong, D. Li, L. Wang, S. Song, C. Fan, Nanoscale 2010, 2, 1021–1026;
- 22cC. H. Lu, J. Li, J. J. Liu, H. H. Yang, X. Chen, G. N. Chen, Chem. Eur. J. 2010, 16, 4889–4894;
- 22dY. V. Gerasimova, D. M. Kolpashchikov, Chem. Biol. 2010, 17, 104–106;
- 22eF. Wang, J. Elbaz, R. Orbach, N. Magen, I. Willner, J. Am. Chem. Soc. 2011, 133, 17149–17151;
- 22fS. Shimron, F. Wang, R. Orbach, I. Willner, Anal. Chem. 2012, 84, 1042–1048;
- 22gY. Du, B. Li, E. Wang, Acc. Chem. Res. 2013, 46, 203–213.
- 23
- 23aD. M. Kolpashchikov, J. Am. Chem. Soc. 2008, 130, 2934–2935;
- 23bT. Li, L. Shi, E. Wang, S. Dong, Chem. Eur. J. 2009, 15, 1036–1042;
- 23cJ. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948–1998;
- 23dF. Wang, J. Elbaz, C. Teller, I. Willner, Angew. Chem. Int. Ed. 2011, 50, 295–299; Angew. Chem. 2011, 123, 309–313;
- 23eG. Pelossof, R. Tel-Vered, I. Willner, Anal. Chem. 2012, 84, 3703–3709;
- 23fF. Wang, C. H. Lu, X. Liu, L. Freage, I. Willner, Anal. Chem. 2014, 86, 1614–1621.
- 24
- 24aM. N. Stojanović, D. Stefanović, J. Am. Chem. Soc. 2003, 125, 6673–6676;
- 24bM. N. Stojanovic, S. Semova, D. Kolpashchikov, J. Macdonald, C. Morgan, D. Stefanovic, J. Am. Chem. Soc. 2005, 127, 6914–6915;
- 24cG. Seelig, D. Soloveichik, D. Y. Zhang, E. Winfree, Science 2006, 314, 1585–1588;
- 24dJ. Macdonald, Y. Li, M. Sutovic, H. Lederman, K. Pendri, W. Lu, B. L. Andrews, D. Stefanovic, M. N. Stojanovic, Nano Lett. 2006, 6, 2598–2603;
- 24eJ. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R. D. Levine, I. Willner, Nat. Nanotechnol. 2010, 5, 417–422;
- 24fL. Qian, E. Winfree, Science 2011, 332, 1196–1201;
- 24gJ. Elbaz, F. Wang, F. Remacle, I. Willner, Nano Lett. 2012, 12, 6049–6054;
- 24hR. Orbach, L. Mostinski, F. Wang, I. Willner, Chem. Eur. J. 2012, 18, 14689–14694.
- 25
- 25aA. Saghatelian, N. H. Völcker, K. M. Guckian, V. S. Lin, M. R. Ghadiri, J. Am. Chem. Soc. 2003, 125, 346–347;
- 25bB. Shlyahovsky, Y. Li, O. Lioubashevski, J. Elbaz, I. Willner, ACS Nano 2009, 3, 1831–1843;
- 25cT. Li, E. Wang, S. Dong, J. Am. Chem. Soc. 2009, 131, 15082–15083;
- 25dR. Pei, E. Matamoros, M. Liu, D. Stefanovic, M. N. Stojanovic, Nat. Nanotechnol. 2010, 5, 773–777;
- 25eT. Li, L. Zhang, J. Ai, S. Dong, E. Wang, ACS Nano 2011, 5, 6334–6338;
- 25fH. Pei, L. Liang, G. Yao, J. Li, Q. Huang, C. Fan, Angew. Chem. Int. Ed. 2012, 51, 9020–9024; Angew. Chem. 2012, 124, 9154–9158;
- 25gR. Orbach, F. Wang, O. Lioubashevski, R. D. Levine, F. Remacle, I. Willner, Chem. Sci. 2014, 5, 3381–3387;
- 25hR. Orbach, S. Lilienthal, M. Klein, R. D. Levine, F. Remacle, I. Willner, Chem. Sci. 2015, 6, 1288–1292.
- 26
- 26aL. Chen, R. K. Singh, P. Webley, Microporous Mesoporous Mater. 2007, 102, 159–170;
- 26bY. L. Cao, J. M. Cao, M. B. Zheng, J. S. Liu, G. B. Ji, J. Solid State Chem. 2007, 180, 792–798;
- 26cY. Chen, E. Stathatos, D. D. Dionysiou, Surf. Coat. Technol. 2008, 202, 1944–1950;
- 26dJ. Górka, M. Jaroniec, Carbon 2011, 49, 154–160.
- 27
- 27aC. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710–712;
- 27bN. Negishi, T. Iyoda, K. Hashimoto, A. Fujishima, Chem. Lett. 1995, 24, 841–842;
- 27cM. Grün, I. Lauer, K. K. Unge, Adv. Mater. 1997, 9, 254–257;
- 27dD. Brühwiler, Nanoscale 2010, 2, 887–892;
- 27eJ. Zhao, P. Wan, J. Xiang, T. Tong, L. Dong, Z. Gao, X. Shen, H. Tong, Microporous Mesoporous Mater. 2011, 138, 200–206;
- 27fM. Colilla, B. Gonzalez, M. Vallet-Regi, Biomater. Sci. 2013, 1, 114–134.
- 28
- 28aS. Tao, G. Li, Colloid Polym. Sci. 2007, 285, 721–728;
- 28bT. Wagner, S. Haffer, C. Weinberger, D. Klaus, M. Tiemann, Chem. Soc. Rev. 2013, 42, 4036–4053.
- 29
- 29aM. Vallet-Regí, F. Balas, D. Arcos, Angew. Chem. Int. Ed. 2007, 46, 7548–7558; Angew. Chem. 2007, 119, 7692–7703;
- 29bM. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano 2008, 2, 889–896;
- 29cY. Zhao, B. G. Trewyn, I. I. Slowing, V. S.-Y. Lin, J. Am. Chem. Soc. 2009, 131, 3462–3463.
- 30
- 30aY. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stuckyk, H. J. Shin, R. Ryoo, Nature 2000, 408, 449–453;
- 30bJ. Kim, H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, T. Hyeon, Angew. Chem. Int. Ed. 2008, 47, 8438–8441; Angew. Chem. 2008, 120, 8566–8569;
- 30cC.-P. Tsai, Y. Hung, Y.-H. Chou, D.-M. Huang, J.-K. Hsiao, C. Chang, Y.-C. Chen, C.-Y. Mou, Small 2008, 4, 186–191.
- 31
- 31aS. Xiang, Y. Zhang, Q. Xin, C. Li, Chem. Commun. 2002, 2696–2697;
- 31bS. Huh, H.-T. Chen, J. W. Wiench, M. Pruski, V. S.-Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 1826–1830; Angew. Chem. 2005, 117, 1860–1864;
- 31cF. Jiao, H. Frei, Angew. Chem. Int. Ed. 2009, 48, 1841–1844; Angew. Chem. 2009, 121, 1873–1876.
- 32
- 32aQ. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F.-S. Xiao, Chem. Mater. 2005, 17, 5999–6003;
- 32bQ. Gao, Y. Xu, D. Wu, W. Shen, F. Deng, Langmuir 2010, 26, 17133–17138;
- 32cH. Zheng, Y. Wang, S. Che, J. Phys. Chem. C 2011, 115, 16803–16813.
- 33C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S.-Y. Lin, J. Am. Chem. Soc. 2003, 125, 4451–4459.
- 34
- 34aR. Liu, X. Zhao, T. Wu, P. Feng, J. Am. Chem. Soc. 2008, 130, 14418–14419;
- 34bZ. Luo, K. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan, W. Yang, Angew. Chem. Int. Ed. 2011, 50, 640–643; Angew. Chem. 2011, 123, 666–669.
- 35
- 35aX. Wan, D. Wang, S. Liu, Langmuir 2010, 26, 15574–15579;
- 35bZ. Zhang, D. Balogh, F. Wang, R. Tel-Vered, N. Levy, S. Y. Sung, R. Nechushtai, I. Willner, J. Mater. Chem. B 2013, 1, 3159–3166.
- 36E. Aznar, R. Casasus, B. Garcia-Acosta, M. D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, P. Amoros, Adv. Mater. 2007, 19, 2228–2231.
- 37K. Zhang, W. Wu, K. Guo, J. Chen, P. Zhang, Langmuir 2010, 26, 7971–7980.
- 38
- 38aC. R. Thomas, D. P. Ferris, J.-H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J.-S. Shin, J. Cheon, J. I. Zink, J. Am. Chem. Soc. 2010, 132, 10623–10625;
- 38bP. J. Chen, S. H. Hu, C. S. Hsiao, Y. Y. Chen, D. M. Liu, S. Y. Chen, J. Mater. Chem. 2011, 21, 2535–2543;
- 38cE. Bringas, O. Koysuren, D. V. Quach, M. Mahmoudi, E. Aznar, J. D. Roehling, M. D. Marcos, R. Martinez-Manez, P. Stroeve, Chem. Commun. 2012, 48, 5647–5649.
- 39
- 39aH. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Chem. Mater. 2000, 12, 3301–3305;
- 39bC. Lei, Y. Shin, J. Liu, E. J. Ackerman, J. Am. Chem. Soc. 2002, 124, 11242–11243;
- 39cS. Giri, B. G. Trewyn, M. P. Stellmaker, V. S.-Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038–5044; Angew. Chem. 2005, 117, 5166–5172;
- 39dC. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc. 2009, 131, 16614–16615.
- 40Y. Zhao, B. G. Trewyn, I. I. Slowing, V. S.-Y. Lin, J. Am. Chem. Soc. 2009, 131, 8398–8400.
- 41
- 41aB. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, H. Riess, Crit. Rev. Oncol. Hematol. 2002, 43, 33–56;
- 41bJ. Croissant, J. I. Zink, J. Am. Chem. Soc. 2012, 134, 7628–7631.
- 42
- 42aA. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao, G. Q. Lu, Nanoscale 2011, 3, 2801–2818;
- 42bP. Nadrah, O. Planinsek, M. Gaberscek, J. Mater. Sci. 2014, 49, 481–495.
- 43
- 43aY. Xing, E. Cheng, Y. Yang, P. Chen, T. Zhang, Y. Sun, Z. Yang, D. Liu, Adv. Mater. 2011, 23, 1117–1121;
- 43bM. S. Hung, O. Kurosawa, M. Washizu, Mol. Cell. Probes 2012, 26, 107–112.
- 44C. Chen, J. Geng, F. Pu, X. Yang, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2011, 50, 882–886; Angew. Chem. 2011, 123, 912–916.
- 45Z. Zhang, D. Balogh, F. Wang, S. Y. Sung, R. Nechushtai, I. Willner, ACS Nano 2013, 7, 8455–8468.
- 46C. Temme, R. Weissbach, H. Lilie, C. Wilson, A. Meinhart, S. Meyer, R. Golbik, A. Schierhorn, E. Wahle, J. Biol. Chem. 2009, 284, 8337–8348.
- 47R. J. Devenish, M. Prescott, G. M. Boyle, P. Nagley, J. Bioenerg. Biomembr. 2000, 32, 507–515.
- 48S. Zhou, X. Du, F. Cui, X. Zhang, Small 2014, 10, 980–988.
- 49E. Climent, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. Soto, A. Maquieira, P. Amorós, Angew. Chem. Int. Ed. 2010, 49, 7281–7283; Angew. Chem. 2010, 122, 7439–7441.
- 50W. P. Li, P. Y. Liao, C. H. Su, C. S. Yeh, J. Am. Chem. Soc. 2014, 136, 10062–10075.
- 51C. Chen, F. Pu, Z. Huang, Z. Liu, J. Ren, X. Qu, Nucleic Acids Res. 2011, 39, 1638–1644.
- 52L. Chen, J. Di, C. Cao, Y. Zhao, Y. Ma, J. Luo, Y. Wen, W. Song, Y. Song, L. Jiang, Chem. Commun. 2011, 47, 2850–2852.
- 53Z. Zhang, F. Wang, Y. S. Sohn, R. Nechushtai, I. Willner, Adv. Funct. Mater. 2014, 24, 5662–5670.
- 54M. Chen, S. Yang, X. He, K. Wang, P. Qiu, D. He, J. Mater. Chem. B 2014, 2, 6064–6071.
- 55X. He, Y. Zhao, D. He, K. Wang, F. Xu, J. Tang, Langmuir 2012, 28, 12909–12915.
- 56
- 56aL. Chen, Y. Wen, B. Su, J. Di, Y. Song, L. Jiang, J. Mater. Chem. 2011, 21, 13811–13816;
- 56bC. L. Zhu, C. H. Lu, X. Y. Song, H. H. Yang, X. R. Wang, J. Am. Chem. Soc. 2011, 133, 1278–1281.
- 57P. Zhang, F. Cheng, R. Zhou, J. Cao, J. Li, C. Burda, Q. Min, J. J. Zhu, Angew. Chem. Int. Ed. 2014, 53, 2371–2375; Angew. Chem. 2014, 126, 2403–2407.
- 58Z. Li, Z. Liu, M. Yin, X. Yang, Q. Yuan, J. Ren, X. Qu, Biomacromolecules 2012, 13, 4257–4263.
- 59Z. Zhang, D. Balogh, F. Wang, I. Willner, J. Am. Chem. Soc. 2013, 135, 1934–1940.
- 60Z. Zhang, F. Wang, D. Balogh, I. Willner, J. Mater. Chem. B 2014, 2, 4449–4455.
- 61
- 61aF. Pu, Z. Liu, X. Yang, J. Ren, X. Qu, Chem. Commun. 2011, 47, 6024–6026;
- 61bF. Pu, Z. Liu, J. Ren, X. Qu, Chem. Commun. 2013, 49, 2305–2307;
- 61cF. Pu, J. Ren, X. Qu, Adv. Mater. 2014, 26, 5742–5757.
- 62
- 62aM. Diez, M. Arroyo, F. J. Cerdan, M. Munoz, M. A. Martin, J. L. Balibrea, Oncology 1989, 46, 230–234;
- 62bS. K. Gupta, V. K. Shukla, M. P. Vaidya, S. K. Roy, S. Gupta, J. Surg. Oncol. 1993, 52, 172–175.
- 63
- 63aJ. L. Wike-Hooley, J. Haveman, H. S. Reinhold, Radiother. Oncol. 1984, 2, 343–366;
- 63bP. Vaupel, F. Kallinowski, P. Okunieff, Cancer Res. 1989, 49, 6449–6465.
- 64Q. Yuan, Y. Zhang, T. Chen, D. Lu, Z. Zhao, X. Zhang, Z. Li, C.-H. Yan, W. Tan, ACS Nano 2012, 6, 6337–6344.
- 65Y. Wen, L. Xu, W. Wang, D. Wang, H. Du, X. Zhang, Nanoscale 2012, 4, 4473–4476.
- 66D. He, X. He, K. Wang, J. Cao, Y. Zhao, Adv. Funct. Mater. 2012, 22, 4704–4710.
- 67C. Chen, L. Zhou, J. Geng, J. Ren, X. Qu, Small 2013, 9, 2793–2800.
- 68X. Yang, X. Liu, Z. Liu, F. Pu, J. Ren, X. Qu, Adv. Mater. 2012, 24, 2890–2895.
- 69N. Li, Z. Yu, W. Pan, Y. Han, T. Zhang, B. Tang, Adv. Funct. Mater. 2013, 23, 2255–2262.
- 70
- 70aY. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 2008, 20, 848–858;
- 70bL. L. del Mercato, P. Rivera-Gil, A. Z. Abbasi, M. Ochs, C. Ganas, I. Zins, C. Sönnichsen, W. J. Parak, Nanoscale 2010, 2, 458–467;
- 70cA. G. Skirtach, A. M. Yashchenok, H. Möhwald, Chem. Commun. 2011, 47, 12736–12746;
- 70dW. Tong, X. Song, C. Gao, Chem. Soc. Rev. 2012, 41, 6103–6124.
- 71
- 71aY. J. Wang, V. Bansal, A. N. Zelikin, F. Caruso, Nano Lett. 2008, 8, 1741–1745;
- 71bB. G. De Geest, S. De Koker, G. B. Sukhorukov, O. Kreft, W. J. Parak, A. G. Skirtach, J. Demeester, S. C. De Smedt, W. E. Hennink, Soft Matter 2009, 5, 282–291;
- 71cL. J. De Cock, S. De Koker, B. G. De Geest, J. Grooten, C. Vervaet, J. P. Remon, G. B. Sukhorukov, M. N. Antipina, Angew. Chem. Int. Ed. 2010, 49, 6954–6973; Angew. Chem. 2010, 122, 7108–7127;
- 71dS. De Koker, B. N. Lambrecht, M. A. Willart, Y. van Kooyk, J. Grooten, C. Vervaet, J. P. Remon, B. G. De Geest, Chem. Soc. Rev. 2011, 40, 320–339;
- 71eM. M. de Villiers, Y. M. Lvov, Adv. Drug Delivery Rev. 2011, 63, 699–700.
- 72H. Ai, Adv. Drug Delivery Rev. 2011, 63, 772–788.
- 73
- 73aL. J. Ignarro, G. M. Buga, K. S. Wood, R. E. Byrns, G. Chaudhuri, Proc. Natl. Acad. Sci. USA 1987, 84, 9265–9269;
- 73bT. A. Duchesne, J. Q. Brown, K. B. Guice, Y. M. Lvov, M. J. McShane, Sens. Mater. 2002, 14, 293–308;
- 73cR. Srivastava, M. J. McShane, J. Microencapsulation 2005, 22, 397–411;
- 73dO. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, J. Mater. Chem. 2007, 17, 4471–4476;
- 73eS. Amemori, M. Matsusaki, M. Akashi, Chem. Lett. 2010, 39, 42–43.
- 74W. Qi, X. H. Yan, J. B. Fei, A. H. Wang, Y. Cui, J. B. Li, Biomaterials 2009, 30, 2799–2806.
- 75A. G. Skirtach, B. G. De Geest, A. Mamedov, A. A. Antipov, N. A. Kotov, G. B. Sukhorukov, J. Mater. Chem. 2007, 17, 1050–1054.
- 76
- 76aC. S. Peyratout, L. Dähne, Angew. Chem. Int. Ed. 2004, 43, 3762–3783; Angew. Chem. 2004, 116, 3850–3872;
- 76bP. R. Gil, L. L. del Mercato, P. del Pino, A. Munoz Javier, W. J. Parak, Nano Today 2008, 3, 12–21.
- 77
- 77aF. Caruso, A. S. Susha, M. Giersig, H. Möhwald, Adv. Mater. 1999, 11, 950–953;
- 77bX. P. Qiu, S. Leporatti, E. Donath, H. Möhwald, Langmuir 2001, 17, 5375–5380;
- 77cG. Berth, A. Voigt, H. Dautzenberg, E. Donath, H. Möhwald, Biomacromolecules 2002, 3, 579–590;
- 77dE. Kharlampieva, S. A. Sukhishvili, Polym. Rev. 2006, 46, 377–395;
- 77eZ. P. Wang, Z. Q. Feng, C. Y. Gao, Chem. Mater. 2008, 20, 4194–4199;
- 77fY. Zhu, W. J. Tong, C. Y. Gao, Soft Matter 2011, 7, 5805–5815;
- 77gG. K. Such, A. P. R. Johnston, F. Caruso, Chem. Soc. Rev. 2011, 40, 19–29.
- 78
- 78aY. J. Zhang, S. G. Yang, Y. Guan, W. X. Cao, J. Xu, Macromolecules 2003, 36, 4238–4240;
- 78bY. Zhu, W. J. Tong, C. Y. Gao, H. Möhwald, J. Mater. Chem. 2008, 18, 1153–1158.
- 79
- 79aA. A. Antipov, G. B. Sukhorukov, Adv. Colloid Interface Sci. 2004, 111, 49–61;
- 79bA. Fery, R. Weinkamer, Polymer 2007, 48, 7221–7235;
- 79cA. P. R. Johnston, G. K. Such, F. Caruso, Angew. Chem. Int. Ed. 2010, 49, 2664–2666; Angew. Chem. 2010, 122, 2723–2725.
- 80
- 80aD. B. Shenoy, A. A. Antipov, G. B. Sukhorukov, H. Möhwald, Biomacromolecules 2003, 4, 265–272;
- 80bN. G. Balabushevich, O. P. Tiourina, D. V. Volodkin, N. I. Larionova, G. B. Sukhorukov, Biomacromolecules 2003, 4, 1191–1197;
- 80cA. S. Angelatos, B. Radt, F. Caruso, J. Phys. Chem. B 2005, 109, 3071–3076;
- 80dY. Itoh, M. Matsusaki, T. Kida, M. Akashi, Biomacromolecules 2006, 7, 2715–2718.
- 81
- 81aG. Saito, J. A. Swanson, K.-D. Lee, Adv. Drug Delivery Rev. 2003, 55, 199–215;
- 81bA. N. Zelikin, Q. Li, F. Caruso, Chem. Mater. 2008, 20, 2655–2661.
- 82
- 82aS. A. Sukhishvili, Curr. Opin. Colloid Interface Sci. 2005, 10, 37–44;
- 82bS. Anandhakumar, V. Nagaraja, M. R. Ashok, Colloids Surf. B 2010, 78, 266–274;
- 82cB. M. Wohl, J. F. J. Engbersen, J. Controlled Release 2012, 158, 2–14.
- 83
- 83aA. Yu, Y. Wang, E. Barlow, F. Caruso, Adv. Mater. 2005, 17, 1737–1741;
- 83bB. G. De Geest, R. E. Vandenbroucke, A. M. Guenther, G. B. Sukhorukov, W. E. Hennink, N. N. Sanders, J. Demeester, S. C. De Smedt, Adv. Mater. 2006, 18, 1005–1009.
- 84
- 84aA. N. Zelikin, Q. Li, F. Caruso, Angew. Chem. Int. Ed. 2006, 45, 7743–7745; Angew. Chem. 2006, 118, 7907–7909;
- 84bA. N. Zelikin, J. F. Quinn, F. Caruso, Biomacromolecules 2006, 7, 27–30.
- 85
- 85aS. S. Shiratori, M. F. Rubner, Macromolecules 2000, 33, 4213–4219;
- 85bI. Takayuki, K. Toshiyuki, M. Michiya, A. Mitsuru, Macromolecules 2010, 10, 271–277.
- 86
- 86aA. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, G. B. Sukhorukov, Nano Lett. 2005, 5, 1371–1377;
- 86bA. G. Skirtach, A. Muñoz Javier, O. Kreft, K. Köhler, A. Piera Alberola, H. Möhwald, W. J. Parak, G. B. Sukhorukov, Angew. Chem. Int. Ed. 2006, 45, 4612–4617; Angew. Chem. 2006, 118, 4728–4733;
- 86cA. G. Skirtach, P. Karageorgiev, B. G. De Geest, N. Pazos-Perez, D. Braun, G. B. Sukhorukov, Adv. Mater. 2008, 20, 506–510;
- 86dM. F. Bédard, B. G. De Geest, A. G. Skirtach, H. Möhwald, G. B. Sukhorukov, Adv. Colloid Interface Sci. 2010, 158, 2–14;
- 86eA. K. Barman, S. Verma, Chem. Commun. 2010, 46, 6992–6994.
- 87W. Qi, L. Duan, J. B. Li, Soft Matter 2011, 7, 1571–1576.
- 88
- 88aX. L. Yang, X. Han, Y. H. Zhu, Colloids Surf. A 2005, 264, 49–54;
- 88bQ. Zhao, B. Han, Z. Wang, C. Gao, C. Peng, J. Shen, Nanomedicine 2007, 3, 63–74.
- 89
- 89aJ. F. Quinn, A. P. R. Johnston, G. K. Such, A. N. Zelikin, F. Caruso, Chem. Soc. Rev. 2007, 36, 707–718;
- 89bJ. Shi, Y. Jiang, X. Wang, H. Wu, D. Yang, F. Pan, Y. Suad, Z. Jiang, Chem. Soc. Rev. 2014, 43, 5192–5210.
- 90A. Fujii, Y. Ohmukai, T. Maruyama, T. Sotani, H. Matsuyama, Colloids Surf. A 2011, 384, 529–535.
- 91
- 91aA. P. Johnston, F. Caruso, Angew. Chem. Int. Ed. 2007, 46, 2677–2680; Angew. Chem. 2007, 119, 2731–2734;
- 91bF. Cavalieri, A. Postma, L. Lee, F. Caruso, ACS Nano 2009, 3, 234–240.
- 92A. P. Johnston, L. Lee, Y. Wang, F. Caruso, Small 2009, 5, 1418–1421.
- 93Y. Z. Tian, Y. L. Li, Z. F. Wang, Y. Jiang, J. Mater. Chem. B 2014, 2, 1667–1672.
- 94A. L. Becker, A. P. Johnston, F. Caruso, Macromol. Biosci. 2010, 10, 488–495.
- 95X. Zhang, D. Chabot, Y. Sultan, C. Monreal, M. C. DeRosa, ACS Appl. Mater. Interfaces 2013, 5, 5500–5507.
- 96F. Tanaka, T. Mochizuki, X. Liang, H. Asanuma, S. Tanaka, K. Suzuki, S. Kitamura, A. Nishikawa, K. Ui-Tei, M. Hagiya, Nano Lett. 2010, 10, 3560–3565.
- 97T. Takenaka, M. Endo, Y. Suzuki, Y. Yang, T. Emura, K. Hidaka, T. Kato, T. Miyata, K. Namba, H. Sugiyama, Chem. Eur. J. 2014, 20, 14951–14954.
- 98
- 98aJ. H. Jeong, S. W. Kim, T. G. Park, Bioconjugate Chem. 2003, 14, 473–479;
- 98bJ. Sánchez-Quesada, A. Saghatelian, S. Cheley, H. Bayley, M. R. Ghadiri, Angew. Chem. Int. Ed. 2004, 43, 3063–3067; Angew. Chem. 2004, 116, 3125–3129.
- 99R. B. Fong, Z. L. Ding, C. J. Long, A. S. Hoffman, P. S. Stayton, Bioconjugate Chem. 1999, 10, 720–725.
- 100J. H. Jeong, T. G. Park, Bioconjugate Chem. 2001, 12, 917–923.
- 101K. Ding, F. E. Alemdaroglu, M. Börsch, R. Berger, A. Herrmann, Angew. Chem. Int. Ed. 2007, 46, 1172–1175; Angew. Chem. 2007, 119, 1191–1194.
- 102F. E. Alemdaroglu, N. C. Alemdaroglu, P. Langguth, A. Herrmann, Macromol. Rapid Commun. 2008, 29, 326–329.
- 103F. E. Alemdaroglu, J. Wang, M. Börsch, R. Berger, A. Herrmann, Angew. Chem. Int. Ed. 2008, 47, 974–976; Angew. Chem. 2008, 120, 988–991.
- 104X. Li, Y. Yu, Q. Ji, L. Qiu, Nanomed. Nanotech. Biol. Med. 2015, 11, 175–184.
- 105C. Wu, T. Chen, D. Han, M. You, L. Peng, S. Cansiz, G. Zhu, C. Li, X. Xiong, E. Jimenez, C. J. Yang, W. Tan, ACS Nano 2013, 7, 5724–5731.
- 106Y. Wu, K. Sefah, H. Liu, R. Wang, W. Tan, Proc. Natl. Acad. Sci. USA 2010, 107, 5–10.
- 107T. Chen, C. S. Wu, E. Jimenez, Z. Zhu, J. G. Dajac, M. You, D. Han, X. Zhang, W. Tan, Angew. Chem. Int. Ed. 2013, 52, 2012–2016; Angew. Chem. 2013, 125, 2066–2070.
- 108F. E. Alemdaroglu, N. C. Alemdaroglu, P. Langguth, A. Herrmann, Adv. Mater. 2008, 20, 899–902.
- 109A. Rodríguez-Pulido, A. I. Kondrachuk, D. K. Prusty, J. Gao, M. A. Loi, A. Herrmann, Angew. Chem. Int. Ed. 2013, 52, 1008–1012; Angew. Chem. 2013, 125, 1042–1046.
- 110Z. Cao, R. Tong, A. Mishra, W. Xu, G. C. Wong, J. Cheng, Y. Lu, Angew. Chem. Int. Ed. 2009, 48, 6494–6498; Angew. Chem. 2009, 121, 6616–6620.
- 111
- 111aD. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, C. A. Mirkin, Angew. Chem. Int. Ed. 2010, 49, 3280–3294; Angew. Chem. 2010, 122, 3352–3366;
- 111bD. Smith, V. Schüller, C. Engst, J. Rädler, T. Liedl, Nanomedicine 2013, 8, 105–121;
- 111cJ. W. de Vries, F. Zhang, A. Herrmann, J. Controlled Release 2013, 172, 467–483.
- 112
- 112aJ. Sharma, R. Chhabra, C. S. Andersen, K. V. Gothelf, H. Yan, Y. Liu, J. Am. Chem. Soc. 2008, 130, 7820–7821;
- 112bN. V. Voigt, T. Torring, A. Rotaru, M. F. Jacobsen, J. B. Ravensbaek, R. Subramani, W. Mamdouh, J. Kjems, A. Mokhir, F. Besenbacher, K. V. Gothelf, Nat. Nanotechnol. 2010, 5, 200–203;
- 112cB. Saccà, R. Meyer, M. Erkelenz, K. Kiko, A. Arndt, H. Schroeder, K. S. Rabe, C. M. Niemeyer, Angew. Chem. Int. Ed. 2010, 49, 9378–9383; Angew. Chem. 2010, 122, 9568–9573.
- 113E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems, Nature 2009, 459, 73–76.
- 114K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnso nBuck, J. Nangreave, S. Taylor, R. Pei, M. N. Stojanovic, N. G. Walter, E. Winfree, H. Yan, Nature 2010, 465, 206–210.
- 115
- 115aS. M. Douglas, I. Bachelet, G. M. Church, Science 2012, 335, 831–834;
- 115bJ. Elbaz, I. Willner, Nat. Mater. 2012, 11, 276–277.
- 116O. I. Wilner, Y. Weizmann, R. Gill, O. Lioubashevski, R. Freeman, I. Willner, Nat. Nanotechnol. 2009, 4, 249–254.
- 117R. Orbach, B. Willner, I. Willner, Chem. Commun. 2015, 51, 4144–4160.
- 118
- 118aS. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, D. Luo, Nat. Mater. 2006, 5, 797–801;
- 118bE. Cheng, Y. Xing, P. Chen, Y. Yang, Y. Sun, D. Zhou, L. Xu, Q. Fan, D. Liu, Angew. Chem. Int. Ed. 2009, 48, 7660–7663; Angew. Chem. 2009, 121, 7796–7799;
- 118cL. Peng, M. You, Q. Yuan, C. Wu, D. Han, Y. Chen, Z. Zhong, J. Xue, W. Tan, J. Am. Chem. Soc. 2012, 134, 12302–12307;
- 118dC. Wu, D. Han, T. Chen, L. Peng, G. Zhu, M. You, L. Qiu, K. Sefah, X. Zhang, W. Tan, J. Am. Chem. Soc. 2013, 135, 18644–18650;
- 118eW. Guo, C. H. Lu, X. J. Qi, R. Orbach, M. Fadeev, H. H. Yang, I. Willner, Angew. Chem. Int. Ed. 2014, 53, 10134–10138; Angew. Chem. 2014, 126, 10298–10302;
- 118fW. Guo, C. H. Lu, R. Orbach, F. Wang, X. J. Qi, A. Cecconello, D. Seliktar, I. Willner, Adv. Mater. 2015, 27, 73–78.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.