polyMOFs: A Class of Interconvertible Polymer-Metal-Organic-Framework Hybrid Materials†
Dr. Zhenjie Zhang
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Search for more papers by this authorHa Thi Hoang Nguyen
The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
Search for more papers by this authorProf. Dr. Stephen A. Miller
The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Seth M. Cohen
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)Search for more papers by this authorDr. Zhenjie Zhang
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Search for more papers by this authorHa Thi Hoang Nguyen
The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
Search for more papers by this authorProf. Dr. Stephen A. Miller
The George and Josephine Butler Laboratory for Polymer Research, Department of Chemistry, University of Florida, Gainesville, FL 32611 (USA)
Search for more papers by this authorCorresponding Author
Prof. Dr. Seth M. Cohen
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 (USA)Search for more papers by this authorThis work was supported by a grant from the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under Award No. DE-FG02-08ER46519 (S.M.C.) and the National Science Foundation under Award No. CHE-1305794 (S.A.M.)
Abstract
Preparation of porous materials from one-dimensional polymers is challenging because the packing of polymer chains results in a dense, non-porous arrangement. Herein, we demonstrate the remarkable adaptation of an amorphous, linear, non-porous, flexible organic polymer into a three-dimensional, highly porous, crystalline solid, as the organic component of a metal–organic framework (MOF). A polymer with aromatic dicarboxylic acids in the backbone functioned as a polymer ligand upon annealing with ZnII, generating a polymer–metal–organic framework (polyMOF). These materials break the dogma that MOFs must be prepared from small, rigid ligands. Similarly, polyMOFs contradict conventional polymer chemistry by demonstrating that linear and amorphous polymers can be readily coaxed into a highly crystalline, porous, three-dimensional structure by coordination chemistry.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201502733_sm_miscellaneous_information.pdf6.1 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. W. Bruce, D. O′Hare, R. I. Walton, Porous Materials, Wiley, Chichester, 2011;
- 1bM. E. Davis, Nature 2002, 417, 813–821.
- 2S. M. Kuznicki, Zeolite Molecular Sieves: Structure Chemistry and Use, Wiley, Hoboken, 2013.
- 3
- 3aL. R. MacGillivray, Metal-Organic Frameworks: Design and Application, Wiley, Hoboken, 2010;
10.1002/9780470606858 Google Scholar
- 3bH.-C. Zhou, S. Kitagawa, Chem. Soc. Rev. 2014, 43, 5415–5418.
- 4S.-Y. Ding, W. Wang, Chem. Soc. Rev. 2013, 42, 548–568.
- 5
- 5aH. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018–1023;
- 5bD. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y.-P. Chen, X. Wang, K. Wang, X. Lian, Z.-Y. Gu, J. Park, X. Zou, H.-C. Zhou, Nat. Commun. 2015, 6, 5979;
- 5cH. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. M. Yaghi, Science 2010, 329, 424–428.
- 6J. D. Dunitz, G. Filippini, A. Gavezzotti, Tetrahedron 2000, 56, 6595–6601.
- 7
- 7aN. B. McKeown, ISRN Mater. Sci. 2012, 2012, 16;
- 7bN. B. McKeown, P. M. Budd, Chem. Soc. Rev. 2006, 35, 675–683.
- 8
- 8aP. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, Chem. Commun. 2004, 230–231;
- 8bM. Carta, R. Malpass-Evans, M. Matthew Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli, N. B. McKeown, Science 2013, 339, 303–307.
- 9Q. Song, S. Cao, R. H. Pritchard, B. Ghalei, S. A. Al-Muhtaseb, E. M. Terentjev, A. K. Cheetham, E. Sivaniah, Nat. Commun. 2014, 5, 4813.
- 10
- 10aY. Furukawa, T. Ishiwata, K. Sugikawa, K. Kokado, K. Sada, Angew. Chem. Int. Ed. 2012, 51, 10566–10569; Angew. Chem. 2012, 124, 10718–10721;
- 10bT. Ishiwata, Y. Furukawa, K. Sugikawa, K. Kokado, K. Sada, J. Am. Chem. Soc. 2013, 135, 5427–5432;
- 10cM. Tsotsalas, J. Liu, B. Tettmann, S. Grosjean, A. Shahnas, Z. Wang, C. Azucena, M. Addicoat, T. Heine, J. Lahann, J. Overhage, S. Bräse, H. Gliemann, C. Wöll, J. Am. Chem. Soc. 2014, 136, 8–11.
- 11G. Distefano, H. Suzuki, M. Tsujimoto, S. Isoda, S. Bracco, A. Comotti, P. Sozzani, T. Uemura, S. Kitagawa, Nat. Chem. 2013, 5, 335–341.
- 12I.-H. Park, A. Chanthapally, Z. Zhang, S. S. Lee, M. J. Zaworotko, J. J. Vittal, Angew. Chem. Int. Ed. 2014, 53, 414–419; Angew. Chem. 2014, 126, 424–429.
- 13
- 13aG. Odian, Principles of Polymerization, Wiley, Hoboken, 2004;
10.1002/047147875X Google Scholar
- 13bL. H. Sperling, Introduction to Physical Polymer Science, Wiley, Hoboken, 2006.
- 14H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276–279.
- 15H. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, O. M. Yaghi, Science 2010, 327, 846–850.
- 16
- 16aC. A. Allen, J. A. Boissonnault, J. Cirera, R. Gulland, F. Paesani, S. M. Cohen, Chem. Commun. 2013, 49, 3200–3202;
- 16bC. A. Allen, S. M. Cohen, Inorg. Chem. 2014, 53, 7014–7019.
- 17D. A. Schlüter, C. Hawker, J. Sakamoto, Synthesis of Polymers: New Structures and Methods, Wiley, Hoboken, 2012.
- 18L. Mandelkern, A. L. Allou, M. R. Gopalan, J. Phys. Chem. 1968, 72, 309–318.
- 19Y. Zhou, J. Zhang, G. Su, J. Li, Sci. Rep. 2014, 4, 6250.
- 20
- 20aA. Carné-Sánchez, I. Imaz, M. Cano-Sarabia, D. Maspoch, Nat. Chem. 2013, 5, 203–211;
- 20bM. Pang, A. J. Cairns, Y. Liu, Y. Belmabkhout, H. C. Zeng, M. Eddaoudi, J. Am. Chem. Soc. 2013, 135, 10234–10237.
- 21J. G. Nguyen, S. M. Cohen, J. Am. Chem. Soc. 2010, 132, 4560–4561.
- 22S. S. Kaye, A. Dailly, O. M. Yaghi, J. R. Long, J. Am. Chem. Soc. 2007, 129, 14176–14177.
- 23S.-M. Huh, J. I. Jin, M.-F. Achard, F. Hardouin, Liquid Crystals 1998, 25, 285–293.
- 24K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724–781.
- 25P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495, 80–84.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.