Regioselective Syntheses of 1,2-Benzothiazines by Rhodium-Catalyzed Annulation Reactions†
Ying Cheng
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten Bolm
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)Search for more papers by this authorYing Cheng
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Carsten Bolm
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen (Germany)Search for more papers by this authorY.C. thanks the China Scholarship Council for a pre-doctoral stipend.
Abstract
Rhodium-catalyzed directed carbene insertions into aromatic CH bonds of S-aryl sulfoximines lead to intermediates, which upon dehydration provide 1,2-benzothiazines in excellent yields. The domino-type process is regioselective and shows a high functional-group tolerance. It is scalable, and the only by-products are dinitrogen and water. Three illustrative transformations underscore the synthetic value of the products.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201501583_sm_miscellaneous_information.pdf2.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756.
- 2For the seminal discovery of this heterocyclic scaffold, see: T. R. Williams, D. J. Cram, J. Org. Chem. 1973, 38, 20–26.
- 3
- 3aG. J. Wells, M. Tao, K. A. Josef, R. Bihovsky, J. Med. Chem. 2001, 44, 3488–3503;
- 3bR. Bihovsky, M. Tao, J. P. Mallamo, G. J. Wells, Bioorg. Med. Chem. Lett. 2004, 14, 1035–1038;
- 3cX. Chen, S. Zhang, Y. Yang, S. Hussain, M. He, D. Gui, B. Ma, C. Jing, Z. Qiao, C. Zhu, Q. Yu, Bioorg. Med. Chem. 2011, 19, 7262–7269;
- 3dO. O. Ajani, Arch. Pharm. Chem. Life Sci. 2012, 345, 841–851.
- 4For the use of the isomeric 2,1-benzothiazines in synthetic work, see:
- 4aM. Harmata, M. Kahraman, D. E. Jones, N. Pavri, S. E. Weatherwax, Tetrahedron 1998, 54, 9995–10006;
- 4bM. Harmata, N. Pavri, Angew. Chem. Int. Ed. 1999, 38, 2419–2421;
10.1002/(SICI)1521-3773(19990816)38:16<2419::AID-ANIE2419>3.0.CO;2-I CAS PubMed Web of Science® Google ScholarAngew. Chem. 1999, 111, 2577–2579;10.1002/(SICI)1521-3757(19990816)111:16<2577::AID-ANGE2577>3.0.CO;2-N Web of Science® Google Scholar
- 4cM. Harmata, S. K. Ghosh, Org. Lett. 2001, 3, 3321–3323;
- 4dM. Harmata, X. Hong, C. L. Barnes, Tetrahedron Lett. 2003, 44, 7261–7264;
- 4eM. Harmata, S. K. Ghosh, C. L. Barnes, J. Supramol. Chem. 2002, 2, 349–351;
- 4fM. Harmata, X. Hong, J. Am. Chem. Soc. 2003, 125, 5754–5756;
- 4gM. Harmata, X. Hong, C. L. Barnes, Org. Lett. 2004, 6, 2201–2203;
- 4hM. Harmata, X. Hong, Tetrahedron Lett. 2005, 46, 3847–3849;
- 4iM. Harmata, N. L. Calkins, R. G. Banghman, C. L. Barnes, J. Org. Chem. 2006, 71, 3650–3652.
- 5J. G. Lombardino, D. E. Kuhla, Adv. Heterocycl. Chem. 1981, 28, 73–126.
- 6Note the analogy to the chemistry of sulfoximines, which recently experienced a renaissance. For an excellent review highlighting this development, see: U. Lücking, Angew. Chem. Int. Ed. 2013, 52, 9399–9408; Angew. Chem. 2013, 125, 9570–9580.
- 7
- 7aM. Harmata, K. Rayanil, M. G. Gomes, P. Zheng, N. L. Calkins, S.-Y. Kim, Y. Fan, V. Bumbu, D. R. Lee, S. Wacharasindhu, X. Hong, Org. Lett. 2005, 7, 143–145;
- 7bsee also in A. Garimallaprabhakaran, X. Hong, M. Harmata, ARKIVOC 2012, 119–128.
- 8W. Dong, L. Wang, K. Parthasarathy, F. Pan, C. Bolm, Angew. Chem. Int. Ed. 2013, 52, 11573–11576; Angew. Chem. 2013, 125, 11787–11790.
- 9For a synopsis highlighting the concept of metal–carbene migratory insertions, see: Z. Liu, J. Wang, J. Org. Chem. 2013, 78, 10024–10030.
- 10For reviews on catalytic carbene insertions into CH bonds, see:
- 10aM. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110, 704–724;
- 10bH. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–424;
- 10cH. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861–2903.
- 11
- 11aX. Zhao, G. Wu, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2011, 133, 3296–3299;
- 11bT. Yao, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2012, 51, 775–779; Angew. Chem. 2012, 124, 799–803;
- 11cQ. Xiao, L. Ling, F. Ye, R. Tan, L. Tian, Y, Zhang, Y. Li, J. Wang, J. Org. Chem. 2013, 78, 3879–3885;
- 11dfor dirhodium(II)-catalyzed intramolecular carbenoid insertions into aryl CH bonds, see: C. P. Park, A. Nagle, C. H. Yoon, C. Chen, K. W. Jung, J. Org. Chem. 2009, 74, 6231–6236.
- 12W.-W. Chan, S.-F. Lo, Z. Zhou, W.-Y. Yu, J. Am. Chem. Soc. 2012, 134, 13565–13568.
- 13
- 13aT. K. Hyster, K. E. Ruhl, T. Rovis, J. Am. Chem. Soc. 2013, 135, 5364–5367;
- 13bfor an asymmetric version, see: B. Ye, N. Cramer, Angew. Chem. Int. Ed. 2014, 53, 7896–7899; Angew. Chem. 2014, 126, 8030–8033.
- 14
- 14aZ. Shi, D. C. Koester, M. Boultadakis-Arapinis, F. Glorius, J. Am. Chem. Soc. 2013, 135, 12204–12207;
- 14bY. Liang, K. Yu, B. Li, S. Xu, H. Song, B. Wang, Chem. Commun. 2014, 50, 6130–6133.
- 15S. Cui, Y. Zhang, D. Wang, Q. Wu, Chem. Sci. 2013, 4, 3912–3916.
- 16
- 16aX. Yu, S. Yu, J. Xiao, B. Wan, X. Li, J. Org. Chem. 2013, 78, 5444–5452;
- 16bF. Hu, Y. Xia, F. Ye, Z. Liu, C. Ma, Y. Zhang, J. Wang, Angew. Chem. Int. Ed. 2014, 53, 1364–1367; Angew. Chem. 2014, 126, 1388–1391.
- 17T. K. Hyster, T. Rovis, Chem. Sci. 2011, 2, 1606–1610.
- 18Alternatively, the process can involve an intramolecular 1,2-aryl shift of an intermediate formed by association of the rhodacycle C and 2. For details, see Ref. [12].
- 19Taking into account the low nucleophilicity of the sulfoximine nitrogen atom we assume that the dehydrative ring-closing process leading to the final products is also accelerated by either a metal or a protonic catalyst.
- 20For an analogous reaction sequence, see: Y. H. Kim, H. Lee, Y. J. Kim, B. T. Kim, J.-N. Heo, J. Org. Chem. 2008, 73, 495–501.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.