Phosphorus-Modified Tungsten Nitride/Reduced Graphene Oxide as a High-Performance, Non-Noble-Metal Electrocatalyst for the Hydrogen Evolution Reaction†
Dr. Haijing Yan
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorCorresponding Author
Prof. Chungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)Search for more papers by this authorDr. Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorDr. Aiping Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorMeichen Meng
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorLu Zhao
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorCorresponding Author
Prof. Honggang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)Search for more papers by this authorDr. Haijing Yan
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorCorresponding Author
Prof. Chungui Tian
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)Search for more papers by this authorDr. Lei Wang
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorDr. Aiping Wu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorMeichen Meng
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorLu Zhao
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Search for more papers by this authorCorresponding Author
Prof. Honggang Fu
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 (China)Search for more papers by this authorThis work was supported by the NSFC of China (21031001, 91122018, 21371053, 21101061) and the Program for Innovative Research Team in University (IRT-1237).
Abstract
Phosphorus-modified tungsten nitride/reduced graphene oxide (P-WN/rGO) is designed as a high-efficient, low-cost electrocatalyst for the hydrogen evolution reaction (HER). WN (ca. 3 nm in size) on rGO is first synthesized by using the H3[PO4(W3O9)4] cluster as a W source. Followed by phosphorization, the particle size increase slightly to about 4 nm with a P content of 2.52 at %. The interaction of P with rGO and WN results in an obvious increase of work function, being close to Pt metal. The P-WN/rGO exhibits low onset overpotential of 46 mV, Tafel slope of 54 mV dec−1, and a large exchange current density of 0.35 mA cm−2 in acid media. It requires overpotential of only 85 mV at current density of 10 mA cm−2, while remaining good stability in accelerated durability testing. This work shows that the modification with a second anion is powerful way to design new catalysts for HER.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201501419_sm_miscellaneous_information.pdf1.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. S. Dresselhaus, I. L. Thomas, Nature 2001, 414, 332–337;
- 1bJ. A. Turner, Science 2004, 305, 972–974.
- 2H. M. Chen, C. K. Chen, R. S. Liu, L. Zhang, J. J. Zhang, D. P. Wilkinson, Chem. Soc. Rev. 2012, 41, 5654–5671.
- 3
- 3aM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 3bS. Bai, C. M. Wang, M. S. Deng, M. Gong, Y. Bai, J. Jiang, Y. J. Xiong, Angew. Chem. Int. Ed. 2014, 53, 12120–12124; Angew. Chem. 2014, 126, 12316–12320.
- 4
- 4aJ. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, H. B. Gray, ACS Catal. 2013, 3, 166–169;
- 4bY. Choquette, L. Brossard, A. Lasia, H. Ménard, Electrochim. Acta 1990, 35, 1251–1256;
- 4cT. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100–102;
- 4dD. S. Kong, H. T. Wang, J. J. Cha, M. Pasta, K. J. Koski, J. Yao, Y. Cui, Nano Lett. 2013, 13, 1341–1347;
- 4eJ. J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2015, 9, 931–940;
- 4fY. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 52–65; Angew. Chem. 2015, 127, 52–66.
- 5
- 5aY. Y. Duan, Q. W. Tang, J. Liu, B. L. He, L. M. Yu, Angew. Chem. Int. Ed. 2014, 53, 14569–14574; Angew. Chem. 2014, 126, 14797–14802;
- 5bS. J. Peng, L. L. Li, X. P. Han, W. P. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Y. Cheng, Q. Y. Yan, J. Chen, S. Ramakrishna, Angew. Chem. Int. Ed. 2014, 53, 12594–12599; Angew. Chem. 2014, 126, 12802–12807;
- 5cZ. H. Dai, S. H. Liu, J. C. Bao, H. X. Ju, Chem. Eur. J. 2009, 15, 4321–4326;
- 5dH. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo, Q. B. Meng, Energy Environ. Sci. 2011, 4, 26300–26307;
- 5eM. X. Wu, Q. Y. Zhang, J. Q. Xiao, C. Y. Ma, X. Lin, C. Y. Miao, Y. J. He, Y. R. Gao, A. Hagfeldt, T. L. Ma, J. Mater. Chem. 2011, 21, 10761–10766.
- 6S. Carenco, D. Portehault, C. Boissière, N. Mézailles, C. Sanchez, Chem. Rev. 2013, 113, 7981–8065.
- 7
- 7aE. J. Popczun, J. R. McKone, C. G. Read, A. J. Biacchi, A. M. Wiltrout, N. S. Lewis, R. E. Schaak, J. Am. Chem. Soc. 2013, 135, 9267–9270;
- 7bE. J. Popczun, C. G. Read, C. W. Roske, N. S. Lewis, R. E. Schaak, Angew. Chem. Int. Ed. 2014, 53, 5427–5430; Angew. Chem. 2014, 126, 5531–5534;
- 7cP. Jiang, Q. Liu, Y. H. Liang, J. Q. Tian, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed. 2014, 53, 12855–12859; Angew. Chem. 2014, 126, 13069–13073.
- 8D. S. Yang, D. Bhattacharjya, S. Inamdar, J. Park, J. S. Yu, J. Am. Chem. Soc. 2012, 134, 16127–16130.
- 9
- 9aH. J. Yan, C. G. Tian, L. Sun, B. Wang, L. Wang, J. Yin, A. P. Wu, H. G. Fu, Energy Environ. Sci. 2014, 7, 1939–1949;
- 9bY. Liu, W. E. Mustain, ACS Catal. 2011, 1, 212–220;
- 9cD. Braga, I. G. Lezama, H. Berger, A. F. Morpurgo, Nano Lett. 2012, 12, 5218–5223;
- 9dJ. S. Jang, D. J. Ham, E. Ramasamy, J. Lee, J. S. Lee, Chem. Commun. 2010, 46, 8600–8602.
- 10J. G. Chen, Chem. Rev. 1996, 96, 1477–1498.
- 11W. F. Chen, J. T. Muckerman, E. Fujita, Chem. Commun. 2013, 49, 8896–8909.
- 12J. Kibsgaard, T. F. Jaramillo, Angew. Chem. Int. Ed. 2014, 53, 14433–14437; Angew. Chem. 2014, 126, 14661–14665.
- 13R. H. Wang, Y. Xie, K. Y. Shi, J. Q. Wang, C. G. Tian, P. K. Shen, H. G. Fu, Chem. Eur. J. 2012, 18, 7443–7451.
- 14W. Zhang, Z. Y. Wu, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 14385–14388.
- 15Z. C. Xing, Q. Liu, A. M. Asiri, X. P. Sun, ACS Catal. 2015, 5, 145–149.
- 16J. Yang, Y. Xie, R. H. Wang, B. J. Jiang, C. G. Tian, G. Mu, J. Yin, B. Wang, H. G. Fu, ACS Appl. Mater. Interfaces 2013, 5, 6571–6579.
- 17S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruo, Carbon 2007, 45, 1558–1565.
- 18S. Reich, C. Thomsen, Philos. Trans. R. Soc. A 2004, 362, 2271–2288.
- 19X. M. Chen, G. H. Wu, J. M. Chen, X. Chen, Z. X. Xie, X. R. Wang, J. Am. Chem. Soc. 2011, 133, 3693–3695.
- 20Q. Zhang, C. G. Tian, A. P. Wu, T. X. Tan, L. Sun, L. Wang, H. F. Fu, J. Mater. Chem. 2012, 22, 11778–11784.
- 21H. B. Michaelson, J. Appl. Phys. 1977, 48, 4729–4733.
- 22
- 22aY. G. Li, H. L. Wang, L. M. Xie, Y. Y. Liang, G. S. Hong, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 7296–7299;
- 22bD. Voiry, H. Yamaguchi, J. W. Li, R. Silva, D. C. B. Alves, T. Fujita, M. W. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nat. Mater. 2013, 12, 850–855;
- 22cW. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, Y. Zhu, R. R. Adzic, Energy Environ. Sci. 2013, 6, 943–951;
- 22dW. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. M. Zhu, R. R. Adzic, Angew. Chem. Int. Ed. 2012, 51, 6131–6135; Angew. Chem. 2012, 124, 6235–6239;
- 22eB. F. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc. 2013, 135, 19186–19192;
- 22fA. T. Garcia-Esparza, D. Cha, Y. W. Ou, J. Kubota, K. Domen, K. Takanabe, ChemSusChem 2013, 6, 168–181;
- 22gJ. Q. Tian, Q. Liu, N. Y. Cheng, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed. 2014, 53, 9577–9581; Angew. Chem. 2014, 126, 9731–9735;
- 22hJ. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N. S. Lewis, R. E. Schaak, Chem. Mater. 2014, 26, 4826–4831.
- 23S. Trasatt, O. A. Petri, Pure Appl. Chem. 1991, 63, 711–734.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.