Asymmetric Rhodium-Catalyzed Addition of Thiols to Allenes: Synthesis of Branched Allylic Thioethers and Sulfones†
Adrian B. Pritzius
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernhard Breit
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)Search for more papers by this authorAdrian B. Pritzius
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)
Search for more papers by this authorCorresponding Author
Prof. Dr. Bernhard Breit
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)
Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau (Germany)Search for more papers by this authorThis work was supported by the DFG, the International Research, Training Group “Catalysts and Catalytic Reactions for Organic, Synthesis” (IRTG 1038), the Fonds der Chemischen Industrie, and the Krupp Foundation. We thank Umicore, BASF, and Wacker for generous gifts of chemicals. Ina Rohleff is acknowledged for skillful technical assistance.
Abstract
A highly regio- and enantioselective hydrothiolation of terminal allenes, a reaction which fulfills the criteria of atom economy, is reported. Applying two chiral rhodium catalyst systems, a wide variety of thiols and allenes could be coupled. Oxidation gave access to the corresponding allylic sulfones in essentially enantiomerically pure form. The reaction tolerates a variety of functional groups and labeling experiments gave first insights into the reaction mechanism of this new methodology.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201411402_sm_miscellaneous_information.pdf6.4 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1B. M. Trost, Science 1991, 254, 1471–1477.
- 2Coupling of pronucleophiles with allenes:
- 2aR. Zimmer, C. Dinesh, E. Nandanan, A. F. Khan, Chem. Rev. 2000, 100, 3067–3125;
- 2bN. Nishina, Y. Yamamoto, Angew. Chem. Int. Ed. 2006, 45, 3314–3317; Angew. Chem. 2006, 118, 3392–3395;
- 2cI. S. Kim, M. J. Krische, Org. Lett. 2008, 10, 513–515;
- 2dT. Kawamoto, S. Hirabayashi, X. Guo, T. Nishimura, T. Hayashi, Chem. Commun. 2009, 3528–3530;
- 2eJ. Moran, A. Preetz, R. A. Mesch, M. J. Krische, Nat. Chem. 2011, 3, 287–290;
- 2fK. L. Butler, M. Tragni, R. A. Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175–5178; Angew. Chem. 2012, 124, 5265–5268.
- 3Examples on the coupling of pronucleophiles with alkynes for the synthesis of allylic products:
- 3aB. M. Trost, W. Brieden, Angew. Chem. Int. Ed. Engl. 1992, 31, 1335–1336; Angew. Chem. 1992, 104, 1392–1394;
- 3bL. M. Lutete, I. Kadota, Y. Yamamoto, J. Am. Chem. Soc. 2004, 126, 1622–1623.
- 4For transition-metal-catalyzed allylic substitutions, see:
- 4aB. M. Trost, Chem. Rev. 1996, 96, 395–422;
- 4bB. M. Trost, M. L. Crawley, Chem. Rev. 2003, 103, 2921–2943;
- 4cZ. Lu, S. Ma, Angew. Chem. Int. Ed. 2008, 47, 258–297; Angew. Chem. 2008, 120, 264–303;
- 4dD. C. Vrieze, G. S. Hoge, P. Z. Hoerter, J. T. Van Haitsma, B. M. Samas, Org. Lett. 2009, 11, 3140–3142;
- 4eT. Hayashi, A. Okada, T. Suzuka, M. Kawatsura, Org. Lett. 2003, 5, 1713–1715;
- 4fP. A. Evans, D. K. Leahy, J. Am. Chem. Soc. 2002, 124, 7882–7883.
- 5Transition-metal-catalyzed allylic CH functionalization:
- 5aG. Liu, Y. Wu, Top. Curr. Chem. 2010, 292, 195–209;
- 5bM. S. Chen, M. C. White, J. Am. Chem. Soc. 2004, 126, 1346–1347;
- 5cG. Liu, S. S. Stahl, J. Am. Chem. Soc. 2007, 129, 6328–6335;
- 5dG. Yin, Y. Wu, G. Liu, J. Am. Chem. Soc. 2010, 132, 11978–11987.
- 6
- 6aP. Koschker, A. Lumbroso, B. Breit, J. Am. Chem. Soc. 2011, 133, 20746–20749;
- 6bM. L. Cooke, K. Xu, B. Breit, Angew. Chem. Int. Ed. 2012, 51, 10876–10879; Angew. Chem. 2012, 124, 11034–11037;
- 6cK. Xu, N. Thieme, B. Breit, Angew. Chem. Int. Ed. 2014, 53, 7268–7271; Angew. Chem. 2014, 126, 7396–7399;
- 6dK. Xu, N. Thieme, B. Breit, Angew. Chem. Int. Ed. 2014, 53, 2162–2165; Angew. Chem. 2014, 126, 2194–2197;
- 6eC. Li, B. Breit, J. Am. Chem. Soc. 2014, 136, 862–865.
- 7
- 7aA. Lumbroso, P. Koschker, N. R. Vautravers, B. Breit, J. Am. Chem. Soc. 2011, 133, 2386–2389;
- 7bA. Lumbroso, N. Abermil, B. Breit, Chem. Sci. 2012, 3, 789–793.
- 8For synthesis of allylic thioethers, see:
- 8aM. Roggen, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 8652–8655; Angew. Chem. 2012, 124, 8780–8783;
- 8bX. Zahng, W. Roa, P. W. H. Chan, Synlett 2008, 2204–2208;
- 8cY. Yatsumonji, Y. Ishida, A. Tsubouchi, T. Takeda, Org. Lett. 2007, 9, 4603–4606;
- 8dN. Gao, S. Zheng, W. Yang, X. Zhao, Org. Lett. 2011, 13, 1514–1516;
- 8eS. Zheng, N. Gao, W. Liu, D. Liu, X. Zhao, T. Cohen, Org. Lett. 2010, 12, 4454–4457;
- 8fW. Huang, S. Zheng, J. Tang, X. Zhao, Org. Biomol. Chem. 2011, 9, 7897–7903;
- 8gS. Zheng, W. Huang, N. Gao, R. Cui, M. Zhang, X. Zhao, Chem. Commun. 2011, 47, 6969–6971;
- 8hH.-J. Gais, H. Eichelmann, N. Spalthoff, F. Gerhards, M. Frank, G. Raabe, Tetrahedron: Asymmetry 1998, 9, 235–248;
- 8iH.-J. Gais, N. Spalthoff, T. Jagusch, M. Frank, G. Raabe, Tetrahedron Lett. 2000, 41, 3809–3812;
- 8jH.-J. Gais, T. Jagusch, N. Spalthoff, F. Gerhards, M. Frank, G. Raabe, Chem. Eur. J. 2003, 9, 4202–4221;
- 8kY. Fujiwara, J. Sun, G. C. Fu, Chem. Sci. 2011, 2, 2196–2198;
- 8lJ. Sun, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 4568–4569;
- 8mS. Tanaka, P. K. Pradhan, Y. Maegawa, M. Kitamura, Chem. Commun. 2010, 46, 3996–3998;
- 8nA. B. Zaitsev, H. F. Caldwell, P. S. Pregosin, L. F. Veiros, Chem. Eur. J. 2009, 15, 6468–6477;
- 8oB. M. Trost, T. S. Scanlan, Tetrahedron Lett. 1986, 27, 4141–4144.
- 9For synthesis of allylic sulfones, see:
- 9aM. Ueda, J. F. Hartwig, Org. Lett. 2010, 12, 92–94;
- 9bK. Hiroi, K. Makino, Chem. Lett. 1986, 617–620;
- 9cH. Eichelmann, H.-J. Gais, Tetrahedron: Asymmetry 1995, 6, 643–646;
- 9dB. M. Trost, M. J. Krische, R. Radinov, G. J. Zanoni, J. Am. Chem. Soc. 1996, 118, 6297–6298;
- 9eB. M. Trost, M. L. Crawley, C. B. Lee, J. Am. Chem. Soc. 2000, 122, 6120–6121;
- 9fM. Jegelka, B. Plietker, Org. Lett. 2009, 11, 3462–3465;
- 9gM. C. Liao, X. H. Duan, Y. M. Liang, Tetrahedron Lett. 2005, 46, 3469–3472;
- 9hF. X. Felpin, Y. Landais, J. Org. Chem. 2005, 70, 6441–6446;
- 9iY. Uozumi, T. Suzuka, Synthesis 2008, 1960–1964.
- 10For application of thioethers in organic synthesis, see:
- 10aA. M. Masdeu-Bultó, M. Diéguez, E. Martin, M. Gómez, Coord. Chem. Rev. 2003, 242, 159–201;
- 10bY. A. Lin, J. M. Chalker, N. Floyd, G. J. L. Bernardes, B. G. Davis, J. Am. Chem. Soc. 2008, 130, 9642–9643;
- 10cS. Barluenga, P. Lopez, E. Moulin, N. Winssinger, Angew. Chem. Int. Ed. 2004, 43, 3467–3470; Angew. Chem. 2004, 116, 3549–3552;
- 10dT. Liu, X. Zhao, L. Lu, T. Cohen, Org. Lett. 2009, 11, 4576–4579.
- 11For application of sulfones in organic synthesis, see:
- 11aP. L. Fuchs, T. F. Braish, Chem. Rev. 1986, 86, 903–917;
- 11bB. M. Trost, M. G. Organ, G. A. O’Doherty, J. Am. Chem. Soc. 1995, 117, 9662–9670;
- 11cB. M. Trost, Bull. Chem. Soc. Jpn. 1988, 61, 107–124;
- 11dH.-J. Gais, G. Hellmann, J. Am. Chem. Soc. 1992, 114, 4439–4440;
- 11eR. Scholz, G. Hellmann, S. Rohs, D. Özdemir, G. Raabe, C. Vermeeren, H.-J. Gais, Eur. J. Org. Chem. 2010, 4588–4616;
- 11fG. Hellmann, A. Hack, E. Thiemermann, O. Luche, G. Raabe, H.-J. Gais, Chem. Eur. J. 2013, 19, 3869–3897.
- 12For application of thioethers and sulfones in drugs and bioactive compounds, see:
- 12a“Process for preparing Dorzolamide”: R. N. Kankan, D. R. Rao, S. S. Mudgal, (CIPLA LIMITED), US 2010/0113804A1, 2008;
- 12b“Process for the preparation of leukotrien antagonist and intermediates thereof”: L. Coppi, M. Bartrata Sanmarti, Y. Gasanz Guillén, M. Monsalvatje Llagostera, P. Talavera Escasany, EP 1783117A1, 2005;
- 12cF. Velázquez, M. Sannigrahi, F. Bennett, R. G. Lovey, A. Arasappan, S. Bogen, L. Nair, S. Venkatraman, M. Blackman, S. Hendrata, Y. Huang, R. Huelgas, P. Pinto, K.-C. Cheng, X. Tong, A. T. McPhail, F. G. Njoroge, J. Med. Chem. 2010, 53, 3075–3085.
- 13Further applications of sulfones as HIV-1-protease inhibitors or potential agents against Alzheimer’s diseases, see:
- 13aT. Zhou, B. Peters, M. F. Maldonado, T. Govender, P. G. Andersson, J. Am. Chem. Soc. 2012, 134, 13592–13595;
- 13bM. Teall, P. Oakley, T. Harrison, D. Shaw, E. Kay, J. Elliott, U. Gerhard, J. L. Castro, M. Shearman, R. G. Ball, N. N. Tsou, Bioorg. Med. Chem. Lett. 2005, 15, 2685–2688.
- 14P. Kumar, V. Naidu, P. Gupta, Tetrahedron 2007, 63, 2745–2785.
- 15
- 15aH. Sumiyoshi, M. J. Wargovich, Cancer Res. 1990, 50, 5084–5087;
- 15bA. Arora, I. A. Siddiqui, Y. Shukla, Mol. Cancer Ther. 2004, 3, 1459–1466;
- 15cA. Arunkumar, M. R. Vijayababu, P. Venkataraman, K. Senthilkumar, J. Arunakaran, Biol. Pharm. Bull. 2006, 29, 375–379.
- 16For hydrothiolation of unsaturated CC bonds leading to vinylic products as major product, see:
- 16aR. Castarlenas, A. Di Giuseppe, J. J. Pérez-Torrente, L. A. Oro, Angew. Chem. Int. Ed. 2013, 52, 211–222; Angew. Chem. 2013, 125, 223–234;
- 16bT. Kondo, T. Mitsudo, Chem. Rev. 2000, 100, 3205–3220;
- 16cI. P. Beletskaya, V. P. Ananikov, Chem. Rev. 2011, 111, 1596–1636;
- 16dMenggenbateer, M. Narsireddy, G. Ferrara, N. Nishina, T. Jin, Y. Yamamoto, Tetrahedron Lett. 2010, 51, 4627–4629;
- 16eS. Kodama, A. Nomoto, M. Kajitani, E. Nishinaka, M. Sonoda, A. Ogawa, J. Sulfur Chem. 2009, 30, 309–318;
- 16fA. Di Giuseppe, R. Castarlenas, J. J. Perez-Torrente, M. Crucianelli, V. Polo, R. Sancho, F. J. Lahoz, L. A. Oro, J. Am. Chem. Soc. 2012, 134, 8171–8183;
- 16gA. Ogawa, J. Organomet. Chem. 2000, 611, 463–474;
- 16hR. Singh, D. S. Raghuvanshi, K. N. Singh, Org. Lett. 2013, 15, 4202–4205;
- 16iC. Cao, L. R. Fraser, J. A. Love, J. Am. Chem. Soc. 2005, 127, 17614–17615;
- 16jS. Shoai, P. Bichler, B. Kang, H. Buckley, J. A. Love, Organometallics 2007, 26, 5778–5781;
- 16kL. R. Fraser, J. Bird, Q. Wu, C. Cao, B. O. Patrick, J. A. Love, Organometallics 2007, 26, 5602–5611;
- 16lA. Sabarre, J. Love, Org. Lett. 2008, 10, 3941–3944;
- 16mJ. Yang, A. Sabarre, L. R. Fraser, B. O. Patrick, J. A. Love, J. Org. Chem. 2009, 74, 182–187.
- 17For hydrothiolation of special heteroatom-substituted terminal allenes and carbonylative hydrothiolations, see:
- 17aW.-J. Xiao, H. Alper, J. Org. Chem. 1999, 64, 9646–9652;
- 17bW.-J. Xiao, G. Vasapollo, H. Alper, J. Org. Chem. 1998, 63, 2609–2612;
- 17cW. Klop, P. A. A. Klusener, L. Brandsma, Recl. Trav. Chim. Pays-Bas 1984, 103, 27–29;
- 17dD. Goeppel, I. Münster, R. Brückner, Tetrahedron 1994, 50, 3687–3708.
- 18
- 18aP. Brownbridge, S. Warren, J. Chem. Soc. Perkin Trans. 1 1976, 2125–2132;
- 18bE. Schaumann, A. Kirschning, F. Narjes, J. Org. Chem. 1991, 56, 717–723.
- 19To avoid an Evans–Mislow rearrangement the oxidative work-up has to be performed at 0 °C. For Evans–Mislow rearrangements, see:
- 19aP. Bickart, F. W. Carson, J. Jacobus, E. G. Miller, K. Mislow, J. Am. Chem. Soc. 1968, 90, 4869–4876;
- 19bR. Tang, K. Mislow, J. Am. Chem. Soc. 1970, 92, 2100–2104;
- 19cD. A. Evans, G. C. Andrews, Acc. Chem. Res. 1974, 7, 147–155.
- 20U. Gellrich, A. Meißner, A. Steffani, M. Kähny, H.-J. Drexler, D. Heller, D. A. Plattner, B. Breit, J. Am. Chem. Soc. 2014, 136, 1097–1104.
- 21
- 21aB. Breit, Angew. Chem. Int. Ed. 2005, 44, 6816–6825; Angew. Chem. 2005, 117, 6976–6986;
- 21bB. Breit, W. Seiche, J. Am. Chem. Soc. 2003, 125, 6608–6609;
- 21cW. Seiche, A. Schuschkowski, B. Breit, Adv. Synth. Catal. 2005, 347, 1488–1494;
- 21dU. Gellrich, W. Seiche, M. Keller, B. Breit, Angew. Chem. Int. Ed. 2012, 51, 11033–11038; Angew. Chem. 2012, 124, 11195–11200;
- 21eV. Agabekov, W. Seiche, B. Breit, Chem. Sci. 2013, 4, 2418–2422;
- 21fU. Gellrich, D. Himmel, M. Meuwly, B. Breit, Chem. Eur. J. 2013, 19, 16272–16281.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.