Direct α-Arylation of Ethers through the Combination of Photoredox-Mediated CH Functionalization and the Minisci Reaction†
Dr. Jian Jin
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/
Search for more papers by this authorCorresponding Author
Prof. Dr. David W. C. MacMillan
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/Search for more papers by this authorDr. Jian Jin
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/
Search for more papers by this authorCorresponding Author
Prof. Dr. David W. C. MacMillan
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/
Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ 08544 (USA) http://www.princeton.edu/chemistry/macmillan/Search for more papers by this authorThe authors are grateful for financial support provided by the NIH General Medical Sciences (Grant NIHGMS (R01 GM103558-03)) and gifts from Merck, Amgen, Abbvie, and BMS.
Abstract
The direct α-arylation of cyclic and acyclic ethers with heteroarenes has been accomplished through the design of a photoredox-mediated CH functionalization pathway. Transiently generated α-oxyalkyl radicals, produced from a variety of widely available ethers through hydrogen atom transfer (HAT), were coupled with a range of electron-deficient heteroarenes in a Minisci-type mechanism. This mild, visible-light-driven protocol allows direct access to medicinal pharmacophores of broad utility using feedstock substrates and a commercial photocatalyst.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201410432_sm_miscellaneous_information.pdf11.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aT. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527–532;
- 1bJ. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102–113;
- 1cJ. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828–6838; Angew. Chem. 2012, 124, 6934–6944;
- 1dC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363;
- 1eD. M. Schultz, T. P. Yoon, Science 2014, 343, 1239176.
- 2
- 2aA. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334, 1114–1117;
- 2bM. T. Pirnot, D. A. Rankic, D. B. C. Martin, D. W. C. MacMillan, Science 2013, 339, 1593–1596.
- 3Y.-R. Luo, Comprehensive Handbook of Chemical Bond Energies, CRC Press, Boca Raton, 2007.
10.1201/9781420007282 Google Scholar
- 4J. M. Mayer, Acc. Chem. Res. 2011, 44, 36–46.
- 5K. Qvortrup, D. A. Rankic, D. W. C. MacMillan, J. Am. Chem. Soc. 2014, 136, 626–629.
- 6For a review of additions of nucleophilic radicals to heteroarenes, see:
- 6aF. Minisci, F. Fontana, E. Vismara, J. Heterocycl. Chem. 1990, 27, 79–96; for examples of Minisci reactions of oxyalkyl radicals generated via the persulfate, see:
- 6bW. Buratti, G. P. Gardini, F. Minisci, F. Bertini, R. Galli, M. Perchinunno, Tetrahedron 1971, 27, 3655–3668;
- 6cX. Li, H.-Y. Wang, Z.-J. Shi, New J. Chem. 2013, 37, 1704–1706; for examples of Minisci reactions of oxyalkyl radicals generated by other methods, see:
- 6dF. Minisci, R. Bernardi, F. Bertini, R. Galli, M. Perchinunno, Tetrahedron 1971, 27, 3575–3579;
- 6eF. Minisci, A. Citterio, E. Vismara, Tetrahedron 1985, 41, 4157–4170;
- 6fF. Fontana, F. Minisci, Y. M. Yan, L. Zhao, Tetrahedron Lett. 1993, 34, 2517–2520.
- 7D. Lednicer, Strategies for Organic Drug Synthesis and Design, Wiley, Hoboken, 2008.
10.1002/9780470399613 Google Scholar
- 8
- 8aD. Alberico, M. E. Scott, M. Lautens, Chem. Rev. 2007, 107, 174–238;
- 8bI. V. Seregin, V. Gevorgyan, Chem. Soc. Rev. 2007, 36, 1173–1193;
- 8cL. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792–9826; Angew. Chem. 2009, 121, 9976–10011;
- 8dF. Bellina, R. Rossi, Tetrahedron 2009, 65, 10269–10310;
- 8eD. P. Hari, B. König, Angew. Chem. Int. Ed. 2013, 52, 4734–4743; Angew. Chem. 2013, 125, 4832–4842; for recent examples of additions of aryl radicals to heteroarenes, see:
- 8fD. Xue, Z.-H. Jia, C.-J. Zhao, Y.-Y. Zhang, C. Wang, J. Xiao, Chem. Eur. J. 2014, 20, 2960–2965;
- 8gJ. Zhang, J. Chen, X. Zhang, X. Lei, J. Org. Chem. 2014, 79, 10682–10688.
- 9
- 9aD. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224–228;
- 9bG. A. Molander, V. Colombel, V. A. Braz, Org. Lett. 2011, 13, 1852–1855;
- 9cY. Fujiwara, J. A. Dixon, F. O′Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara, P. S. Baran, Nature 2012, 492, 95–99;
- 9dA. P. Antonchick, L. Burgmann, Angew. Chem. Int. Ed. 2013, 52, 3267–3271; Angew. Chem. 2013, 125, 3349–3353;
- 9eJ. Gui, Q. Zhou, C.-M. Pan, Y. Yabe, A. C. Burns, M. R. Collins, M. A. Ornelas, Y. Ishihara, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 4853–4856;
- 9fD. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802–4806; Angew. Chem. 2014, 126, 4902–4906.
- 10M. A. J. Doncton, MedChemComm 2011, 2, 1135–1161.
- 11S.-Y. Zhang, F.-M. Zhang, Y.-Q. Tu, Chem. Soc. Rev. 2011, 40, 1937–1949.
- 12Redox potentials measured by cyclic voltammetry. MeCN/H2O=2:1 was required to solubilize the electrolyte (nBu)4NPF6.
- 13
- 13aT. Caronna, A. Citterio, L. Grossi, F. Minisci, K. Ogawa, Tetrahedron 1976, 32, 2741–2745; photoredox catalysis has previously been applied to the reduction of persulfate anion:
- 13bC. Dai, F. Meschini, J. M. R. Narayanam, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 4425–4431.
- 14
- 14aM. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, Jr., G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712–5719;
- 14bE. D. Cline, S. Bernhard, Chimia 2009, 63, 709–713.
- 15Calculated from the corresponding ground-state potential and emission maximum. See:
- 15aJ. W. Tucker, C. R. J. Stephenson, J. Org. Chem. 2012, 77, 1617–1622;
- 15breference [14a].
- 16While the oxidation potential for the S2O82−/SO4.− redox couple in MeCN could not be obtained by direct measurement or from the literature, the value has been estimated to be ≤0.35 V vs. SCE in aqueous solution. See:
- 16aR. Memming, J. Electrochem. Soc. 1969, 116, 785–790;
- 16breference [13b].
- 17HAT from ethers by a sulfate radical anion has been reported previously. See:
- 17aR. E. Huie, C. L. Clifton, S. A. Kafafi, J. Phys. Chem. 1991, 95, 9336–9340;
- 17bS. Padmaja, Z. B. Alfassi, P. Neta, R. E. Huie, Int. J. Chem. Kinet. 1993, 25, 193–198.
- 18aL. K. Wan, J. Peng, M. Z. Lin, Y. Muroya, Y. Katsumura, H. Y. Fu, Radiat. Phys. Chem. 2012, 81, 524–530;
- 18bH. Eibenberger, S. Steenken, P. O′Neill, D. Schulte-Frohlinde, J. Phys. Chem. 1978, 82, 749–750;
- 18cC. George, H. El Rassy, J.-M. Chovelon, Int. J. Chem. Kinet. 2001, 33, 539–547.
- 19In order to rule out a radical-chain-reaction pathway through SET between 10 and 3, two identical reaction mixtures were irradiated with visible light for 30 min. At this point, one reaction was immediately worked up and analyzed, while the other was allowed to proceed in the dark for an additional 3.5 h. The yields of these two reactions were the same within experimental error, thus indicating that the reaction does not proceed in the absence of light and that a radical chain mechanism is not operative. See the Supporting Information for experimental details.
- 20F. Minisci, E. Vismara, F. Fontana, G. Morini, M. Serravalle, C. Giordano, J. Org. Chem. 1987, 52, 730–736.
- 21L. Flamigni, A. Barbieri, C. Sabatini, B. Ventura, F. Barigelletti, Top. Curr. Chem. 2007, 281, 143–303.
- 22J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker, R. Rohl, S. Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004, 126, 2763–2767.
- 23
- 23aK. Kalyanasundaram, Coord. Chem. Rev. 1982, 46, 159–244;
- 23bA. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. Von Zelewsky, Coord. Chem. Rev. 1988, 84, 85–277.
- 24J. A. Burkhard, G. Wuitschik, M. Rogers-Evans, K. Müller, E. M. Carreira, Angew. Chem. Int. Ed. 2010, 49, 9052–9067; Angew. Chem. 2010, 122, 9236–9251.
- 25
- 25aD. I. Coppi, A. Salomone, F. M. Perna, V. Capriati, Chem. Commun. 2011, 47, 9918–9920;
- 25bS. Hashizume, K. Oisaki, M. Kanai, Org. Lett. 2011, 13, 4288–4291;
- 25cD. Ravelli, M. Zoccolillo, M. Mella, M. Fagnoni, Adv. Synth. Catal. 2014, 356, 2781–2786.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.