A Hierarchical Tin/Carbon Composite as an Anode for Lithium-Ion Batteries with a Long Cycle Life†
Dr. Xingkang Huang
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorDr. Shumao Cui
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorDr. Jingbo Chang
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorPeter B. Hallac
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorChristopher R. Fell
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorYanting Luo
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorBernhard Metz
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorJunwei Jiang
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorPatrick T. Hurley
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorCorresponding Author
Prof. Junhong Chen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)Search for more papers by this authorDr. Xingkang Huang
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorDr. Shumao Cui
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorDr. Jingbo Chang
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Search for more papers by this authorPeter B. Hallac
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorChristopher R. Fell
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorYanting Luo
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorBernhard Metz
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorJunwei Jiang
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorPatrick T. Hurley
Global Technology & Innovation, Power Solutions, Johnson Controls, 5757 North Green Bay Avenue, Milwaukee, WI 53209 (USA)
Search for more papers by this authorCorresponding Author
Prof. Junhong Chen
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 3200 North Cramer Street, Milwaukee, WI 53211 (USA)Search for more papers by this authorFinancial support for this work was provided by the U.S. Department of Energy (grant number DE-EE0003208) and Johnson Controls, Inc. The SEM imaging was conducted at the UWM Bioscience Electron Microscope Facility, and TEM analyses were conducted in the UWM Physics HRTEM Laboratory. The authors thank Dr. H. A. Owen, Dr. S. E. Hardcastle, and D. P. Robertson for their technical support with SEM, BET and Raman, and TEM analysis, respectively.
Abstract
Tin is a promising anode candidate for next-generation lithium-ion batteries with a high energy density, but suffers from the huge volume change (ca. 260 %) upon lithiation. To address this issue, here we report a new hierarchical tin/carbon composite in which some of the nanosized Sn particles are anchored on the tips of carbon nanotubes (CNTs) that are rooted on the exterior surfaces of micro-sized hollow carbon cubes while other Sn nanoparticles are encapsulated in hollow carbon cubes. Such a hierarchical structure possesses a robust framework with rich voids, which allows Sn to alleviate its mechanical strain without forming cracks and pulverization upon lithiation/de-lithiation. As a result, the Sn/C composite exhibits an excellent cyclic performance, namely, retaining a capacity of 537 mAh g−1 for around 1000 cycles without obvious decay at a high current density of 3000 mA g−1.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201409530_sm_miscellaneous_information.pdf2.6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1L. P. Xu, C. Kim, A. K. Shukla, A. G. Dong, T. M. Mattox, D. J. Milliron, J. Cabana, Nano Lett. 2013, 13, 1800–1805.
- 2Y. Yu, L. Gu, X. Y. Lang, C. B. Zhu, T. Fujita, M. W. Chen, J. Maier, Adv. Mater. 2011, 23, 2443–2447.
- 3K. Ui, S. Kikuchi, Y. Kadoma, N. Kumagai, S. Ito, J. Power Sources 2009, 189, 224–229.
- 4A. Marcinek, L. J. Hardwick, T. J. Richardson, X. Song, R. Kostecki, J. Power Sources 2007, 173, 965–971.
- 5W. Li, R. Yang, J. Zheng, X. G. Li, Nano Energy 2013, 2, 1314–1321.
- 6Y. Gu, F. D. Wu, Y. Wang, Adv. Funct. Mater. 2013, 23, 893–899.
- 7C. Arbizzani, M. Lazzari, M. Mastragostino, J. Electrochem. Soc. 2005, 152, A 289–A294.
- 8K. K. D. Ehinon, S. Naille, R. Dedryvere, P. E. Lippens, J. C. Jumas, D. Gonbeau, Chem. Mater. 2008, 20, 5388–5398.
- 9L. Y. Beaulieu, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 3237–3241.
- 10X. L. Wang, M. Feygenson, H. Y. Chen, C. H. Lin, W. Ku, J. M. Bai, M. C. Aronson, T. A. Tyson, W. Q. Han, J. Am. Chem. Soc. 2011, 133, 11213–11219.
- 11Y. S. Jung, K. T. Lee, J. H. Ryu, D. Im, S. M. Oh, J. Electrochem. Soc. 2005, 152, A 1452–A1457.
- 12K. T. Lee, Y. S. Jung, S. M. Oh, J. Am. Chem. Soc. 2003, 125, 5652–5653.
- 13Z. Q. Zhu, S. W. Wang, J. Du, Q. Jin, T. R. Zhang, F. Y. Cheng, J. Chen, Nano Lett. 2014, 14, 153–157.
- 14J. C. Guo, Z. C. Yang, L. A. Archer, J. Mater. Chem. A 2013, 1, 8710–8715.
- 15Z. Tan, Z. H. Sun, H. H. Wang, Q. Guo, D. S. Su, J. Mater. Chem. A 2013, 1, 9462–9468.
- 16Y. C. Qiu, K. Y. Yan, S. H. Yang, Chem. Commun. 2010, 46, 8359–8361.
- 17S. Z. Liang, X. F. Zhu, P. C. Lian, W. S. Yang, H. H. Wang, J. Solid State Chem. 2011, 184, 1400–1404.
- 18G. X. Wang, B. Wang, X. L. Wang, J. Park, S. X. Dou, H. Ahn, K. Kim, J. Mater. Chem. 2009, 19, 8378–8384.
- 19B. Luo, B. Wang, X. L. Li, Y. Y. Jia, M. H. Liang, L. J. Zhi, Adv. Mater. 2012, 24, 3538–3543.
- 20C. Nithya, S. Gopukumar, ChemSusChem 2013, 6, 898–904.
- 21Z. P. Guo, Z. W. Zhao, H. K. Liu, S. X. Dou, Carbon 2005, 43, 1392–1399.
- 22M. H. Wu, C. Wang, J. Chen, F. Q. Wang, B. L. Yi, Ionics 2013, 19, 1341–1347.
- 23K. C. Hsu, C. E. Liu, P. C. Chen, C. Y. Lee, H. T. Chiu, J. Mater. Chem. 2012, 22, 21533–21539.
- 24Y. Wang, M. Wu, Z. Jiao, J. Y. Lee, Chem. Mater. 2009, 21, 3210–3215.
- 25W. Ni, Y. B. Wang, R. Xu, Part. Part. Syst. Charact. 2013, 30, 873–880.
- 26X. Y. Hou, H. Jiang, Y. J. Hu, Y. F. Li, J. C. Huo, C. Z. Li, ACS Appl. Mater. Interfaces 2013, 5, 6672–6677.
- 27Y. Q. Zou, Y. Wang, ACS Nano 2011, 5, 8108–8114.
- 28D. Deng, J. Y. Lee, Angew. Chem. Int. Ed. 2009, 48, 1660–1663; Angew. Chem. 2009, 121, 1688–1691.
- 29M. Kumar, Y. Ando, J. Nanosci. Nanotechnol. 2010, 10, 3739–3758.
- 30C. D. Wang, Y. Li, Y. S. Chui, Q. H. Wu, X. F. Chen, W. J. Zhang, Nanoscale 2013, 5, 10599–10604.
- 31J. Qin, C. N. He, N. Q. Zhao, Z. Y. Wang, C. S. Shi, E. Z. Liu, J. J. Li, ACS Nano 2014, 8, 1728–1738.
- 32M. Winter, J. O. Besenhard, Electrochim. Acta 1999, 45, 31–50.
- 33M. Uysal, T. Cetinkaya, A. Alp, H. Akbulut, Appl. Surf. Sci. 2014, 290, 6–12.
- 34D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, M. F. Durstock, J. Power Sources 2011, 196, 1455–1460.
- 35N. A. Kaskhedikar, J. Maier, Adv. Mater. 2009, 21, 2664–2680.
- 36E. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277–2282.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.