Homogeneous Electrocatalytic Water Oxidation at Neutral pH by a Robust Macrocyclic Nickel(II) Complex†
Mei Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
Search for more papers by this authorDr. Ming-Tian Zhang
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
Search for more papers by this authorCheng Hou
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
Search for more papers by this authorCorresponding Author
Prof. Zhuo-Feng Ke
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)Search for more papers by this authorCorresponding Author
Prof. Tong-Bu Lu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)Search for more papers by this authorMei Zhang
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
Search for more papers by this authorDr. Ming-Tian Zhang
Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084 (China)
Search for more papers by this authorCheng Hou
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
Search for more papers by this authorCorresponding Author
Prof. Zhuo-Feng Ke
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)Search for more papers by this authorCorresponding Author
Prof. Tong-Bu Lu
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)Search for more papers by this authorThis work was supported by the 973 Program of China (2012CB821706, 2014CB845602), the NSFC (grant nos. 21331007, 21121061, and 21203256), and the NSF of Guangdong Province (S2012030006240).
Abstract
The development of an earth-abundant, first-row water oxidation catalyst that operates at neutral pH and low overpotential remains a fundamental chemical challenge. Herein, we report the first nickel-based robust homogeneous water oxidation catalyst, which can electrocatalyze water oxidation at neutral pH and low overpotential in phosphate buffer. The results of DFT calculations verify that the OO bond formation in catalytic water oxidation prefers a HOOH coupling mechanism from a cis-isomer of the catalyst.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201406983_sm_miscellaneous_information.pdf1.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. R. Swierk, T. E. Mallouk, Chem. Soc. Rev. 2013, 42, 2357–2387;
- 1bM. Wang, L. Chen, L. Sun, Energy Environ. Sci. 2012, 5, 6763–6778.
- 2M. D. Kärkäs, T. Åkermark, H. Chen, J. Sun, B. Åkermark, Angew. Chem. Int. Ed. 2013, 52, 4189–4193; Angew. Chem. 2013, 125, 4283–4287.
- 3K. S. Joya, Y. F. Joya, K. Ocakoglu, R. van de Krol, Angew. Chem. Int. Ed. 2013, 52, 10426–10437; Angew. Chem. 2013, 125, 10618–10630.
- 4
- 4aL. Wang, L. Duan, B. Stewart, M. Pu, J. Liu, T. Privalov, L. Sun, J. Am. Chem. Soc. 2012, 134, 18868–18880;
- 4bJ. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer, J. Am. Chem. Soc. 2008, 130, 16462–16463;
- 4cD. E. Polyansky, J. T. Muckerman, J. Rochford, R. Zong, R. P. Thummel, E. Fujita, J. Am. Chem. Soc. 2011, 133, 14649–14665;
- 4dF. Li, Y. Jiang, B. Zhang, F. Huang, Y. Gao, L. Sun, Angew. Chem. Int. Ed. 2012, 51, 2417–2420; Angew. Chem. 2012, 124, 2467–2470;
- 4eY. Jiang, F. Li, B. Zhang, X. Li, X. Wang, F. Huang, L. Sun, Angew. Chem. Int. Ed. 2013, 52, 3398–3401; Angew. Chem. 2013, 125, 3482–3485;
- 4fY. Gao, X. Ding, J. Liu, L. Wang, Z. Lu, L. Li, L. Sun, J. Am. Chem. Soc. 2013, 135, 4219–4222;
- 4gL. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418–423;
- 4hF. Li, B. Zhang, X. Li, Y. Jiang, L. Chen, Y. Li, L. Sun, Angew. Chem. Int. Ed. 2011, 50, 12276–12279; Angew. Chem. 2011, 123, 12484–12487.
- 5
- 5aN. D. Schley, J. D. Blakemore, N. K. Subbaiyan, C. D. Incarvito, F. D’Souza, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2011, 133, 10473–10481;
- 5bJ. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 16017–16029;
- 5cJ. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730–8731.
- 6
- 6aD. M. Robinson, Y. B. Go, M. Mui, G. Gardner, Z. Zhang, D. Mastrogiovanni, E. Garfunkel, J. Li, M. Greenblatt, G. C. Dismukes, J. Am. Chem. Soc. 2013, 135, 3494–3501;
- 6bT. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 18153–18156;
- 6cE. A. Karlsson, B.-L. Lee, T. Åkermark, E. V. Johnston, M. D. Kärkäs, J. Sun, Ö. Hansson, J.-E. Bäckvall, B. Åkermark, Angew. Chem. Int. Ed. 2011, 50, 11715–11718; Angew. Chem. 2011, 123, 11919–11922.
- 7
- 7aG. Chen, L. Chen, S.-M. Ng, W.-L. Man, T.-C. Lau, Angew. Chem. Int. Ed. 2013, 52, 1789–1791; Angew. Chem. 2013, 125, 1833–1835;
- 7bJ. A. Seabold, K.-S. Choi, J. Am. Chem. Soc. 2012, 134, 2186–2192;
- 7cW. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990–10991;
- 7dJ. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla, M. Costas, Nat. Chem. 2011, 3, 807–813.
- 8
- 8aC. A. Kent, J. J. Concepcion, C. J. Dares, D. A. Torelli, A. J. Rieth, A. S. Miller, P. G. Hoertz, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 8432–8435;
- 8bD. Wang, J. T. Groves, Proc. Natl. Acad. Sci. USA 2013, 110, 15579–15584;
- 8cR. D. L. Smith, M. S. Prévot, R. D. Fagan, S. Trudel, C. P. Berlinguette, J. Am. Chem. Soc. 2013, 135, 11580–11586;
- 8dT. Zidki, L. Zhang, V. Shafirovich, S. V. Lymar, J. Am. Chem. Soc. 2012, 134, 14275–14278;
- 8eY. Surendranath, D. A. Lutterman, Y. Liu, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6326–6336;
- 8fD. K. Dogutan, R. McGuire, D. G. Nocera, J. Am. Chem. Soc. 2011, 133, 9178–9180;
- 8gM. W. Kanan, D. G. Nocera, Science 2008, 321, 1072–1075;
- 8hY. Surendranath, M. Dincǎ, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 2615–2620.
- 9
- 9aD. K. Bediako, Y. Surendranath, D. G. Nocera, J. Am. Chem. Soc. 2013, 135, 3662–3674;
- 9bA. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, L. Spiccia, Catal. Sci. Technol. 2013, 3, 1725–1732;
- 9cA. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, L. Spiccia, Energy Environ. Sci. 2013, 6, 579–586;
- 9dM. Dincă, Y. Surendranath, D. G. Nocera, Proc. Natl. Acad. Sci. USA 2010, 107, 10337–10341;
- 9eD. K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. K. Yachandra, D. G. Nocera, J. Am. Chem. Soc. 2012, 134, 6801–6809;
- 9fD. C. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi, J. Am. Chem. Soc. 2012, 134, 19572–19575;
- 9gG. Chen, L. J. Chen, S. M. Ng, T. C. Lau, ChemSusChem 2014, 7, 127–134.
- 10
- 10aZ. Chen, T. J. Meyer, Angew. Chem. Int. Ed. 2013, 52, 700–703; Angew. Chem. 2013, 125, 728–731;
- 10bM.-T. Zhang, Z. Chen, P. Kang, T. J. Meyer, J. Am. Chem. Soc. 2013, 135, 2048–2051;
- 10cS. M. Barnett, K. I. Goldberg, J. M. Mayer, Nat. Chem. 2012, 4, 498–502.
- 11
- 11aM. L. Rigsby, S. Mandal, W. Nam, L. C. Spencer, A. Llobet, S. S. Stahl, Chem. Sci. 2012, 3, 3058–3062;
- 11bT. Zhang, C. Wang, S. Liu, J.-L. Wang, W. Lin, J. Am. Chem. Soc. 2013, 136, 273–281.
- 12B. J. Fisher, R. Eisenberg, J. Am. Chem. Soc. 1980, 102, 7361–7363.
- 13M. G. B. Drew, K. F. Mok, Acta Crystallogr. Sect. C 1987, 43, 666–668.
- 14Q. Zhang, X.-P. Shen, H. Zhou, Acta Crystallogr. Sect. E 2009, 65, m 1141.
- 15E. Colacio, I. Ben Maimoun, R. Kivekäs, R. Sillanpää, J. Suárez-Varela, Inorg. Chim. Acta 2004, 357, 1465–1470.
- 16
- 16aE. Zeigerson, G. Ginzburg, N. Schwartz, Z. Luz, D. Meyerstein, J. Chem. Soc. Chem. Commun. 1979, 241–243;
- 16bJ. Schneider, H. Jia, K. Kobiro, D. E. Cabelli, J. T. Muckerman, E. Fujita, Energy Environ. Sci. 2012, 5, 9502–9510.
- 17R. Jurczakowski, G. Litwinienko, M. Orlik, Z. Phys. Chem. 2006, 220, 1083–1099.
- 18S. Mandal, E. S. Gould, Inorg. Chem. 1995, 34, 3993–3997.
- 19R. D. L. Smith, M. S. Prevot, R. D. Fagan, Z. Zhang, P. A. Sedach, M. K. J. Siu, S. Trudel, C. P. Berlinguette, Science 2013, 340, 60–63.
- 20L. Jiang, X. L. Feng, T. B. Lu, Cryst. Growth Des. 2005, 5, 1469–1475.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.