High-Rate Oxygen Electroreduction over Graphitic-N Species Exposed on 3D Hierarchically Porous Nitrogen-Doped Carbons†
Wenhui He
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
Search for more papers by this authorChunhuan Jiang
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
Search for more papers by this authorJiabo Wang
Chemistry and Life Science School, Changchun University of Technology, Changchun, 130022 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Lehui Lu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)Search for more papers by this authorWenhui He
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
Search for more papers by this authorChunhuan Jiang
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
Search for more papers by this authorJiabo Wang
Chemistry and Life Science School, Changchun University of Technology, Changchun, 130022 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Lehui Lu
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (P.R. China)Search for more papers by this authorFinancial support by the NSFC (No. 21125521) and the National Basic Research Program of China (973 Program, No. 2010CB933600) is gratefully acknowledged.
Abstract
Nitrogen-doped species (NDs) are theoretically accepted as a determinant of the catalytic activity of metal-free N-doped carbon (NC) catalysts for oxygen reduction reaction (ORR). However, direct relationships between ND type and ORR activity have been difficult to extract because the complexity of carbon matrix impairs efforts to expose specific NDs. Herein, we demonstrate the fabrication of a 3D hierarchically porous NC catalyst with micro-, meso-, and macroporosity in one structure, in which sufficient exposure and availability of inner-pore catalytic sites can be achieved due to its super-high surface area (2191 cm2 g−1) and interconnected pore system. More importantly, in-situ formation of graphitic-N species (GNs) on the surface of NC stimulated by KOH activation enables us to experimentally reveal the catalytic nature of GNs for ORR, which is of great significance for the design and development of advanced metal-free NC electrocatalysts.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201404333_sm_miscellaneous_information.pdf6 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. K. Debe, Nature 2012, 486, 43;
- 1bG. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science 2011, 332, 443;
- 1cY. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 2011, 10, 780;
- 1dS. Guo, S. Zhang, L. Wu, S. Sun, Angew. Chem. 2012, 124, 11940; Angew. Chem. Int. Ed. 2012, 51, 11770;
- 1eF. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J. P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci. 2011, 4, 114.
- 2
- 2aK. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760;
- 2bB. Winther-Jensen, O. Winther-Jensen, M. Forsyth, D. R. MacFarlane, Science 2008, 321, 671;
- 2cK. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu, Adv. Mater. 2013, 25, 998;
- 2dJ. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, S. Z. Qiao, Angew. Chem. 2012, 124, 3958; Angew. Chem. Int. Ed. 2012, 51, 3892;
- 2eI. Y. Jeon, H. J. Choi, S. M. Jung, J. M. Seo, M. J. Kim, L. Dai, J. B. Baek, J. Am. Chem. Soc. 2013, 135, 1386;
- 2fD. Wang, D. S. Su, Energy Environ. Sci. 2014, 7, 576.
- 3
- 3aL. Lai, J. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. Ruoff, Energy Environ. Sci. 2012, 5, 7936;
- 3bT. Sharifi, G. Hu, X. Jia, T. Wagberg, ACS Nano 2012, 6, 8904;
- 3cH. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J. i. Ozaki, S. Miyata, J. Power Sources 2009, 187, 93;
- 3dH. Kim, K. Lee, S. I. Woo, Y. Jung, Phys. Chem. Chem. Phys. 2011, 13, 17505;
- 3eR. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. 2010, 122, 2619; Angew. Chem. Int. Ed. 2010, 49, 2565;
- 3fR. Silva, D. Voiry, M. Chhowalla, T. Asefa, J. Am. Chem. Soc. 2013, 135, 7823.
- 4
- 4aY. Zhao, L. Yang, S. Chen, X. Wang, Y. Ma, Q. Wu, Y. Jiang, W. Qian, Z. Hu, J. Am. Chem. Soc. 2013, 135, 1201;
- 4bF. Gao, G. L. Zhao, S. Yang, J. J. Spivey, J. Am. Chem. Soc. 2013, 135, 3315;
- 4cR. A. Sidik, A. B. Anderson, N. P. Subramanian, S. P. Kumaraguru, B. N. Popov, J. Phys. Chem. B 2006, 110, 1787;
- 4dT. Ikeda, M. Boero, S. F. Huang, K. Terakura, M. Oshima, J. i. Ozaki, J. Phys. Chem. C 2008, 112, 14706;
- 4eD. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W. X. Li, Q. Fu, X. Ma, Q. Xue, G. Sun, X. Bao, Chem. Mater. 2011, 23, 1188.
- 5
- 5aR. Arrigo, M. Havecker, S. Wrabetz, R. Blume, M. Lerch, J. McGregor, E. P. Parrott, J. A. Zeitler, L. F. Gladden, A. Knop-Gericke, R. Schlogl, D. S. Su, J. Am. Chem. Soc. 2010, 132, 9616;
- 5bT. Sharifi, F. Nitze, H. R. Barzegar, C. W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 2012, 50, 3535.
- 6
- 6aW. Ding, Z. Wei, S. Chen, X. Qi, T. Yang, J. Hu, D. Wang, L. J. Wan, S. F. Alvi, L. Li, Angew. Chem. 2013, 125, 11971; Angew. Chem. Int. Ed. 2013, 52, 11755;
- 6bS. Yang, X. Feng, X. Wang, K. Mullen, Angew. Chem. 2011, 123, 5451; Angew. Chem. Int. Ed. 2011, 50, 5339;
- 6cX. H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. 2012, 124, 9827; Angew. Chem. Int. Ed. 2012, 51, 9689.
- 7D. Yu, Q. Zhang, L. Dai, J. Am. Chem. Soc. 2010, 132, 15127.
- 8
- 8aE. J. Biddinger, U. S. Ozkan, J. Phys. Chem. C 2010, 114, 15306;
- 8bP. H. Matter, L. Zhang, U. S. Ozkan, J. Catal. 2006, 239, 83.
- 9
- 9aL. Wang, A. Ambrosi, M. Pumera, Angew. Chem. 2013, 125, 14063; Angew. Chem. Int. Ed. 2013, 52, 13818;
- 9bW. Li, J. Wu, D. C. Higgins, J. Y. Choi, Z. Chen, ACS Catal. 2012, 2, 2761;
- 9cJ. S. Lee, G. S. Park, S. T. Kim, M. Liu, J. Cho, Angew. Chem. 2013, 125, 1060; Angew. Chem. Int. Ed. 2013, 52, 1026;
- 9dY. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J. C. Idrobo, S. J. Pennycook, H. Dai, Nat. Nanotechnol. 2012, 7, 394.
- 10
- 10aJ. Liang, X. Du, C. Gibson, X. W. Du, S. Z. Qiao, Adv. Mater. 2013, 25, 6226;
- 10bD. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. 2008, 120, 379; Angew. Chem. Int. Ed. 2008, 47, 373;
- 10cG. S. Chai, I. S. Shin, J. S. Yu, Adv. Mater. 2004, 16, 2057.
- 11
- 11aH. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318, 426;
- 11bY. Liu, K. Ai, L. Lu, Chem. Rev. 2014, 114, 5057.
- 12Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
- 13
- 13aM. T. de Groot, M. Merkx, A. H. Wonders, M. T. M. Koper, J. Am. Chem. Soc. 2005, 127, 7579;
- 13bC. Coutanceau, M. J. Croissant, T. Napporn, C. Lamy, Electrochim. Acta 2000, 46, 579;
- 13cD. B. Sepa, M. V. Vojnovic, A. Damjanovic, Electrochim. Acta 1986, 31, 91.
- 14Y. Sun, C. Li, G. Shi, J. Mater. Chem. 2012, 22, 12810.
- 15
- 15aH. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I.-S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, Y. H. Lee, Adv. Funct. Mater. 2009, 19, 1987;
- 15bW. He, L. Lu, Adv. Funct. Mater. 2012, 22, 2542.
- 16S. Wang, X. Jing, Y. Wang, J. Si, Polym. Adv. Technol. 2014, 25, 152.
- 17M. Zhong, E. K. Kim, J. P. McGann, S. E. Chun, J. F. Whitacre, M. Jaroniec, K. Matyjaszewski, T. Kowalewski, J. Am. Chem. Soc. 2012, 134, 14846.
- 18X. Sun, Y. Li, Angew. Chem. 2004, 116, 607; Angew. Chem. Int. Ed. 2004, 43, 597.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.