Thermal Methane Conversion to Formaldehyde Promoted by Single Platinum Atoms in PtAl2O4− Cluster Anions†
Dr. Yan-Xia Zhao
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorZi-Yu Li
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorZhen Yuan
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorDr. Xiao-Na Li
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Sheng-Gui He
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)Search for more papers by this authorDr. Yan-Xia Zhao
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorZi-Yu Li
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorZhen Yuan
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorDr. Xiao-Na Li
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Search for more papers by this authorCorresponding Author
Prof. Dr. Sheng-Gui He
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)
Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P.R. China)Search for more papers by this authorThis work was supported by the National Natural Science Foundation of China (21203208 and 21325314), the Major Research Plan of China (213CB834603, 2011CB932302), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09030101).
Abstract
Identification and mechanistic study of thermal methane conversion mediated by gas-phase species is important for finding potentially useful routes for direct methane transformation under mild conditions. Negatively charged oxide species are usually inert with methane. This work reports an unexpected result that the bi-metallic oxide cluster anions PtAl2O4− can transform methane into a stable organic compound, formaldehyde, with high selectivity. The clusters are prepared by laser ablation and reacted with CH4 in an ion trap reactor. The reaction is characterized by mass spectrometry and density functional theory calculations. It is found that platinum rather than oxygen activates CH4 at the beginning of the reaction. The Al2O4− moiety serves as the support of Pt atom and plays important roles in the late stage of the reaction. A new mechanism for selective methane conversion is provided and new insights into the surface chemistry of single Pt atoms may be obtained from this study.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201403953_sm_miscellaneous_information.pdf4.3 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Lin, A. Sen, Nature 1994, 368, 613–615;
- 1bR. H. Crabtree, Chem. Rev. 1995, 95, 987–1007;
- 1cR. A. Periana, D. J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 1998, 280, 560–564;
- 1dA. Holmen, Catal. Today 2009, 142, 2–8;
- 1eR. A. Himes, K. D. Karlin, Proc. Natl. Acad. Sci. USA 2009, 106, 18877–18878;
- 1fM. C. Alvarez-Galvan, N. Mota, M. Ojeda, S. Rojas, R. M. Navarro, J. L. G. Fierro, Catal. Today 2011, 171, 15–23;
- 1gP. Venkata, L. Reddy, K.-H. Kim, H. Song, Renewable Sustainable Energy Rev. 2013, 24, 578–585.
- 2
- 2aD. Schröder, H. Schwarz, Proc. Natl. Acad. Sci. USA 2008, 105, 18114–18119;
- 2bH. Schwarz, Angew. Chem. 2011, 123, 10276–10297;
10.1002/ange.201006424 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 10096–10115;
- 2cN. Dietl, M. Schlangen, H. Schwarz, Angew. Chem. 2012, 124, 5638–5650;
10.1002/ange.201108363 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 5544–5555.
- 3J. Roithová, D. Schröder, Chem. Rev. 2010, 110, 1170–1211.
- 4
- 4aY.-X. Zhao, X.-N. Wu, J.-B. Ma, S.-G. He, X.-L. Ding, Phys. Chem. Chem. Phys. 2011, 13, 1925–1938;
- 4bX.-L. Ding, X.-N. Wu, Y.-X. Zhao, S.-G. He, Acc. Chem. Res. 2012, 45, 382–390.
- 5
- 5aJ. A. Labinger, J. E. Bercaw, Nature 2002, 417, 507–514;
- 5bF. Arena, A. Parmaliana, Acc. Chem. Res. 2003, 36, 867–875;
- 5cR. Balasubramanian, A. C. Rosenzweig, Acc. Chem. Res. 2007, 40, 573–580;
- 5dG.-J. Wang, M.-F. Zhou, Int. Rev. Phys. Chem. 2008, 27, 1–25;
- 5eD. Balcells, E. Clot, O. Eisenstein, Chem. Rev. 2010, 110, 749–823;
- 5fA. Caballero, P. J. Péreze, Chem. Soc. Rev. 2013, 42, 8809–8820;
- 5gS. Ma, X. Guo, L. Zhao, S. Scottc, X. Bao, J. Energy Chem. 2013, 22, 1–20.
- 6D. Schröder, A. Fiedler, J. Hrušák, H. Schwarz, J. Am. Chem. Soc. 1992, 114, 1215–1222.
- 7N. Dietl, C. van der Linde, M. Schlangen, M. K. Beyer, H. Schwarz, Angew. Chem. 2011, 123, 5068–5072;
10.1002/ange.201100606 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 4966–4969.
- 8G. de Petris, A. Troiani, M. Rosi, G. Angelini, O. Ursini, Chem. Eur. J. 2009, 15, 4248–4252.
- 9
- 9aS. Feyel, J. Döbler, D. Schröder, J. Sauer, H. Schwarz, Angew. Chem. 2006, 118, 4797–4801;
10.1002/ange.200600188 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 4681–4685;
- 9bY.-X. Zhao, X.-N. Wu, Z.-C. Wang, S.-G. He, X.-L. Ding, Chem. Commun. 2010, 46, 1736–1738.
- 10X.-L. Ding, Y.-X. Zhao, X.-N. Wu, Z.-C. Wang, J.-B. Ma, S.-G. He, Chem. Eur. J. 2010, 16, 11463–11470.
- 11
- 11aN. Dietl, M. Engeser, H. Schwarz, Angew. Chem. 2009, 121, 4955–4957;
10.1002/ange.200901596 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4861–4863;
- 11bJ.-B. Ma, X.-N. Wu, Y.-X. Zhao, X.-L. Ding, S.-G. He, Phys. Chem. Chem. Phys. 2010, 12, 12223–12228;
- 11cN. Dietl, R. F. Höckendorf, M. Schlangen, M. Lerch, M. K. Beyer, H. Schwarz, Angew. Chem. 2011, 123, 1466–1470; Angew. Chem. Int. Ed. 2011, 50, 1430–1434.
- 12Z.-Y. Li, Y.-X. Zhao, X.-N. Wu, X.-L. Ding, S.-G. He, Chem. Eur. J. 2011, 17, 11728–11733.
- 13
- 13aX.-N. Wu, X.-N. Li, X.-L. Ding, S.-G. He, Angew. Chem. 2013, 125, 2504–2508; Angew. Chem. Int. Ed. 2013, 52, 2444–2448;
- 13bR. Kretschmer, M. Schlangen, H. Schwarz, Angew. Chem. 2013, 125, 6213–6217;
10.1002/ange.201300900 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 6097–6101.
- 14
- 14aH.-F. Liu, R.-S. Liu, K. Y. Liew, R. E. Johnson, J. H. Lunsford, J. Am. Chem. Soc. 1984, 106, 4117–4121;
- 14bJ. H. Lunsford, Angew. Chem. 1995, 107, 1059–1070;
10.1002/ange.19951070905 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 970–980;
- 14cS. Arndt, G. Laugel, S. Levchenko, R. Horn, M. Baerns, M. Scheffler, R. Schlögl, R. Schomäcker, Catal. Rev. 2011, 53, 424–514.
- 15
- 15aD. Schröder, H. Schwarz, Angew. Chem. 1990, 102, 1468–1469; Angew. Chem. Int. Ed. Engl. 1990, 29, 1433–1434;
- 15bD. Schröder, H. Schwarz, D. E. Clemmer, Y. Chen, P. B. Armentrout, V. I. Baranov, D. K. Böhme, Int. J. Mass Spectrom. Ion Processes 1997, 161, 175–191;
- 15cF. Aguirre, J. Husband, C. J. Thompson, K. L. Stringer, R. B. Metz, J. Chem. Phys. 2002, 116, 4071–4078;
- 15dS. G. Ard, J. J. Melko, V. G. Ushakov, R. Johnson, J. A. Fournier, N. S. Shuman, H. Guo, J. Troe, A. A. Viggiano, J. Phys. Chem. A 2014, 118, 2029–2039.
- 16
- 16aY.-M. Chen, D. E. Clemmer, P. B. Armentrout, J. Am. Chem. Soc. 1994, 116, 7815–7826;
- 16bM. F. Ryan, A. Fiedler, D. Schröder, H. Schwarz, Organometallics 1994, 13, 4072–4081.
- 17D. Schröder, H. Schwarz, Angew. Chem. 1995, 107, 2126–2150; Angew. Chem. Int. Ed. Engl. 1995, 34, 1973–1995.
- 18
- 18aK. K. Irikura, J. L. Beauchamp, J. Am. Chem. Soc. 1991, 113, 2769–2770;
- 18bL. G. Parke, C. S. Hinton, P. B. Armentrout, J. Phys. Chem. C 2007, 111, 17773–17787;
- 18cP. B. Armentrout, L. Parke, C. Hinton, M. Citir, ChemPlusChem 2013, 78, 1157–1173.
- 19S. M. Lang, T. M. Bernhardt, R. N. Barnett, U. Landman, Angew. Chem. 2010, 122, 993–996; Angew. Chem. Int. Ed. 2010, 49, 980–983.
- 20Z.-Y. Li, Z. Yuan, Y.-X. Zhao, S.-G. He, Chem. Eur. J. 2014, 20, 4163–4169.
- 21
- 21aC. J. Cassady, S. W. Mclvany, J. Am. Chem. Soc. 1990, 112, 4788–4797;
- 21bS. M. Lang, A. Frank, T. M. Bernhardt, J. Phys. Chem. C 2013, 117, 9791–9800;
- 21cS. M. Lang, A. Frank, T. M. Bernhardt, Int. J. Mass Spectrom. 2013, 354, 365–371.
- 22J.-H. Meng, X.-J. Deng, Z.-Y. Li, S.-G. He, W.-J. Zheng, Chem. Eur. J. 2014, 20, 5580–5583.
- 23U. Achatz, C. Berg, S. Joos, B. S. Fox, M. K. Beyer, G. Niedner-Schatteburg, V. E. Bondybey, Chem. Phys. Lett. 2000, 320, 53–58.
- 24D. J. Trevor, D. M. Cox, A. Kaldor, J. Am. Chem. Soc. 1990, 112, 3742–3749.
- 25C. Adlhart, E. Uggerud, Chem. Commun. 2006, 2581–2582.
- 26
- 26aRef. [18a];
- 26bC. Heinemann, R. Wesendrup, H. Schwarz, Chem. Phys. Lett. 1995, 239, 75–83;
- 26cX.-G. Zhang, R. Liyanage, P. B. Armentrout, J. Am. Chem. Soc. 2001, 123, 5563–5575;
- 26dA. Shayesteh, V. V. Lavrov, G. K. Koyanagi, D. K. Bohme, J. Phys. Chem. A 2009, 113, 5602–5611;
- 26eD. J. Harding, C. Kerpal, G. Meijer, A. Fielicke, Angew. Chem. 2012, 124, 842–845;
10.1002/ange.201107042 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 817–819.
- 27
- 27aJ. J. Carroll, J. C. Weisshaar, P. E. M. Siegbahn, C. A. M. Wittborn, M. R. A. Blomberg, J. Phys. Chem. 1995, 99, 14388–14396;
- 27bM. L. Campbell, J. Chem. Soc. Faraday Trans. 1998, 94, 353–358;
- 27cH.-G. Cho, L. Andrews, J. Phys. Chem. A 2008, 112, 12293–12295;
- 27dM. Perera, R. B. Metz, O. Kostko, M. Ahmed, Angew. Chem. 2013, 125, 922–925; Angew. Chem. Int. Ed. 2013, 52, 888–891.
- 28
- 28aM. Lersch, M. Tilset, Chem. Rev. 2005, 105, 2471–2526;
- 28bO. A. Mironov, S. M. Bischof, M. M. Konnick, B. G. Hashiguchi, V. R. Ziatdinov, W. A. Goddard, M. Ahlquist, R. A. Periana, J. Am. Chem. Soc. 2013, 135, 14644–14658.
- 29
- 29aW. Tang, Z. Hu, M. Wang, G. D. Stucky, H. Metiu, E. W. McFarland, J. Catal. 2010, 273, 125–137;
- 29bP. J. S. Prieto, A. P. Ferreira, P. S. Haddad, D. Zanchet, J. M. C. Bueno, J. Catal. 2010, 276, 351–359;
- 29cD. B. Lukyanov, T. Vazhnova, J. Mol. Catal. A 2011, 342–343, 1–5;
- 29dZ. Cheng, C. S. Lo, Ind. Eng. Chem. Res. 2013, 52, 15447–15454.
- 30
- 30aY. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A. U. Nilekar, G. Peng, J. A. Herron, D. C. Bell, H. Saltsburg, M. Mavrikakis, M. Flytzani-Stephanopoulos, Science 2010, 329, 1633–1636;
- 30bB. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641;
- 30cM. Moses-DeBusk, M. Yoon, L. F. Allard, D. R. Mullins, Z. Wu, X. Yang, G. Veith, G. M. Stocks, C. K. Narula, J. Am. Chem. Soc. 2013, 135, 12634–12645;
- 30dX.-G. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 31
- 31aM. Nöβler, R. Mitrić, V. B. Koutecký, G. E. Johnson, E. C. Tyo, A. W. Castleman, Jr., Angew. Chem. 2010, 122, 417–420;
10.1002/ange.200905434 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 407–410;
- 31bH.-J. Zhai, L.-S. Wang, Chem. Phys. Lett. 2010, 500, 185–195;
- 31cA. W. Castleman, Jr., Catal. Lett. 2011, 141, 1243–1253;
- 31dS. Yin, E. R. Bernstein, Int. J. Mass Spectrom. 2012, 321, 49–65.
- 32Z. Yuan, Z.-Y. Li, Z.-X. Zhou, Q.-Y. Liu, Y.-X. Zhao, S.-G. He, J. Phys. Chem. C 2014, DOI: .
- 33J. K. Böhlke, J. R. de Laeter, P. De Bièvre, H. Hidaka, H. S. Peiserb, K. J. R. Rosman, P. D. P. Taylor, J. Phys. Chem. Ref. Data 2005, 34, 57–67.
- 34
- 34aThe Φ value is calculated as k1/kcalc, where kcalc is the theoretical collision rate;[34b,c]
- 34bG. Gioumousis, D. P. Stevenson, J. Chem. Phys. 1958, 29, 294–299;
- 34cG. Kummerlöwe, M. K. Beyer, Int. J. Mass Spectrom. 2005, 244, 84–90.
- 35M. Citir, R. B. Metz, L. Belau, M. Ahmed, J. Phys. Chem. A 2008, 112, 9584–9590.
- 36M. C. McCarthy, R. W. Field, R. Engleman, P. F. Bernath, J. Mol. Spectrosc. 1993, 158, 208–236.
- 37
- 37aY.-X. Zhao, X.-N. Wu, J.-B. Ma, S.-G. He, X.-L. Ding, J. Phys. Chem. C 2010, 114, 12271–12279;
- 37bJ.-B. Ma, X.-N. Wu, Y.-X. Zhao, X.-L. Ding, S.-G. He, J. Phys. Chem. A 2010, 114, 10024–10027;
- 37cY.-X. Zhao, J.-Y. Yuan, X.-L. Ding, S.-G. He, W.-J. Zheng, Phys. Chem. Chem. Phys. 2011, 13, 10084–10090.
- 38L.-H. Tian, T.-M. Ma, X.-N. Li, S.-G. He, Dalton Trans. 2013, 42, 11205–11211.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.