Peapod-Type Nanocomposites through the In Situ Growth of Gold Nanoparticles within Preformed Hexaniobate Nanoscrolls†
Dr. Shiva Adireddy
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorCecilia E. Carbo
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorTaha Rostamzadeh
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorDr. Jose M. Vargas
Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorProf. Leonard Spinu
Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorCorresponding Author
Prof. John B. Wiley
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)===Search for more papers by this authorDr. Shiva Adireddy
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorCecilia E. Carbo
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorTaha Rostamzadeh
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorDr. Jose M. Vargas
Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorProf. Leonard Spinu
Department of Physics and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Search for more papers by this authorCorresponding Author
Prof. John B. Wiley
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)
Department of Chemistry and AMRI, University of New Orleans, New Orleans, LA 70148 (USA)===Search for more papers by this authorThis work was supported in part by the Louisiana Board of Regents Post-Katrina Support Fund Initiative (PKSFI, LEQSF(2007-12)-ENH-PKSFI-PRS-04). C.E.C.’s REU summer support through NSF DMR-1262904 is gratefully acknowledged.
Abstract
A facile in situ method to grow Au nanoparticles (NPs) in hexaniobate nanoscrolls is applied to the formation of plasmonic Au@hexaniobate and bifunctional plasmonic-magnetic Au-Fe3O4@hexaniobate nanopeapods (NPPs). Utilizing a solvothermal treatment, rigid multiwalled hexaniobate nanoscrolls and partially filled Fe3O4@hexaniobate NPPs were first fabricated. These nanostructures were then used as templates for the controlled in situ growth of Au NPs. The resulting peapod structures exhibited high filling fractions and long-range uniformity. Optical measurements showed a progressive red shift in plasmonic behavior between Au NPs, Au NPPs, and Au-Fe3O4 NPPs; magnetic studies found that the addition of gold in the Fe3O4@hexaniobate NPPs reduced interparticle coupling effects. The development of this approach allows for the routine bulk preparation of noble-metal-containing bifunctional nanopeapod materials.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201310834_sm_miscellaneous_information.pdf5.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Scheffel, M. Gruska, D. Faivre, A. Linaroudis, J. M. Plitzko, D. Schuler, Nature 2006, 440, 110;
- 1bS. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665;
- 1cS. Adireddy, C. K. Lin, B. B. Cao, W. L. Zhou, G. Caruntu, Chem. Mater. 2010, 22, 1946;
- 1dN. J. Halas, Nano Lett. 2010, 10, 3816.
- 2
- 2aA. Verma, F. Stellacci, Small 2010, 6, 12;
- 2bA. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 2009, 8, 543.
- 3
- 3aA. Nel, T. Xia, L. Madler, N. Li, Science 2006, 311, 622;
- 3bC. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem. 2005, 15, 3559;
- 3cM. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 2002, 415, 617.
- 4
- 4aA. H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. 2007, 119, 1242; Angew. Chem. Int. Ed. 2007, 46, 1222;
- 4bJ. L. Lyon, D. A. Fleming, M. B. Stone, P. Schiffer, M. E. Williams, Nano Lett. 2004, 4, 719.
- 5X. Zhou, W. L. Xu, Y. Wang, Q. Kuang, Y. F. Shi, L. B. Zhong, Q. Q. Zhang, J. Phys. Chem. C 2010, 114, 19607.
- 6J. H. Shen, Y. H. Zhu, X. L. Yang, J. Zong, C. Z. Li, Langmuir 2013, 29, 690.
- 7A. J. Pasquale, B. M. Reinhard, L. Dal Negro, ACS Nano 2011, 5, 6578.
- 8D. P. Huang, X. T. Bai, L. Q. Zheng, J. Phys. Chem. C 2011, 115, 14641.
- 9
- 9aY. Yao, G. S. Chaubey, J. B. Wiley, J. Am. Chem. Soc. 2012, 134, 2450;
- 9bB. W. Smith, D. E. Luzzi, Chem. Phys. Lett. 2000, 321, 169.
- 10M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, L. C. Chen, Nat. Mater. 2006, 5, 102.
- 11L. F. Liu, W. Lee, R. Scholz, E. Pippel, U. Gosele, Angew. Chem. 2008, 120, 7112; Angew. Chem. Int. Ed. 2008, 47, 7004.
- 12
- 12aC. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, D. Golberg, Nano Lett. 2008, 8, 3081;
- 12bP. H. Chen, C. H. Hsieh, S. Y. Chen, C. H. Wu, Y. J. Wu, L. J. Chou, L. J. Chen, Nano Lett. 2010, 10, 3267.
- 13
- 13aY. F. Lai, P. Chaudouet, F. Charlot, I. Matko, C. Dubourdieu, Appl. Phys. Lett. 2009, 94, 022904;
- 13bW. W. Zhou, L. Sun, T. Yu, J. X. Zhang, H. Gong, H. J. Fan, Nanotechnology 2009, 20, 455603.
- 14Y. Qin, S. M. Lee, A. Pan, U. Gosele, M. Knez, Nano Lett. 2008, 8, 114.
- 15J. A. Sioss, C. D. Keating, Nano Lett. 2005, 5, 1779.
- 16W. Zhu, G. Z. Wang, X. Hong, X. S. Shen, D. P. Li, X. Xie, Electrochim. Acta 2009, 55, 480.
- 17C. M. Hangarter, Y. I. Lee, S. C. Hernandez, Y. H. Choa, N. V. Myung, Angew. Chem. 2010, 122, 7235;
10.1002/ange.201001559 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 7081.
- 18S. E. Hunyadi, C. J. Murphy, J. Phys. Chem. B 2006, 110, 7226.
- 19W. Zhou, W. M. Chen, J. W. Nai, P. G. Yin, C. P. Chen, L. Guo, Adv. Funct. Mater. 2010, 20, 3678.
- 20S. Adireddy, C. E. Carbo, Y. Yao, J. M. Vargas, L. Spinu, J. B. Wiley, Chem. Mater. 2013, 25, 3902.
- 21
- 21aN. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547;
- 21bJ. Homola, S. S. Yee, G. Gauglitz, Sens. Actuators B 1999, 54, 3.
- 22
- 22aS. Adireddy, C. K. Lin, V. Palshin, Y. M. Dong, R. Cole, G. Caruntu, J. Phys. Chem. C 2009, 113, 20800;
- 22bQ. A. Pankhurst, N. T. K. Thanh, S. K. Jones, J. Dobson, J. Phys. D 2009, 42, 224001;
- 22cA. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
- 23S. Adireddy, Y. Yao, J. He, J. B. Wiley, Mater. Res. Bull. 2013, 48, 3236.
- 24
- 24aM. Saruyama, M. Kanehara, T. Teranishi, J. Am. Chem. Soc. 2010, 132, 3280;
- 24bH. Hiramatsu, F. E. Osterloh, Chem. Mater. 2004, 16, 2509.
- 25
- 25aJ. T. G. Overbeek, Adv. Colloid Interface Sci. 1982, 15, 251;
- 25bV. Privman, D. V. Goia, J. Park, E. Matijevic, J. Colloid Interface Sci. 1999, 213, 36;
- 25cV. K. LaMer, R. H. Dinegar, J. Am. Chem. Soc. 1950, 72, 4847.
- 26
- 26aR. C. Wadams, L. Fabris, R. A. Vaia, K. Park, Chem. Mater. 2013, 25, 4772;
- 26bA. M. Alkilany, C. J. Murphy, Langmuir 2009, 25, 13874.
- 27F. E. Sarac, C. Yilmaz, F. Y. Acar, U. Unal, RSC Adv. 2012, 2, 10182.
- 28
- 28aK. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Anal. Chem. 1995, 67, 735;
- 28bL. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo, Langmuir 2000, 16, 9722.
- 29
- 29aM. Q. Zhao, R. M. Crooks, Chem. Mater. 1999, 11, 3379;
- 29bS. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, M. F. Bertino, Chem. Mater. 2005, 17, 5941;
- 29cO. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, R. M. Crooks, J. Am. Chem. Soc. 2005, 127, 1015.
- 30
- 30aS. Lin, M. Li, E. Dujardin, C. Girard, S. Mann, Adv. Mater. 2005, 17, 2553;
- 30bS. A. Maier, P. G. Kik, H. A. Atwater, Appl. Phys. Lett. 2002, 81, 1714;
- 30cB. Q. Ding, Z. T. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, J. Bokor, J. Am. Chem. Soc. 2010, 132, 3248;
- 30dQ. H. Wei, K. H. Su, S. Durant, X. Zhang, Nano Lett. 2004, 4, 1067.
- 31
- 31aZ. C. Xu, Y. L. Hou, S. H. Sun, J. Am. Chem. Soc. 2007, 129, 8698;
- 31bD. S. Wang, Y. D. Li, J. Am. Chem. Soc. 2010, 132, 6280;
- 31cF. H. Lin, R. A. Doong, J. Phys. Chem. C 2011, 115, 6591;
- 31dC. Xu, J. Xie, D. Ho, C. Wang, N. Kohler, E. G. Walsh, J. R. Morgan, Y. E. Chin, S. Sun, Angew. Chem. 2008, 120, 179; Angew. Chem. Int. Ed. 2008, 47, 173.
- 32
- 32aU. Maitra, H. Matte, P. Kumar, C. N. R. Rao, Chimia 2012, 66, 941;
- 32bE. Perim, D. S. Galvao, Nanotechnology 2009, 20, 335702;
- 32cD. Xia, Q. Z. Xue, J. Xie, H. J. Chen, C. Lv, F. Besenbacher, M. D. Dong, Small 2010, 6, 2010.
- 33
- 33aR. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787;
- 33bJ. T. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435.
- 34
- 34aC. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545;
- 34bA. R. Tao, S. Habas, P. D. Yang, Small 2008, 4, 310;
- 34cY. N. Xia, Y. J. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62; Angew. Chem. Int. Ed. 2009, 48, 60.
- 35S. Adireddy, T. Rostamzadeh, J. B. Wiley, unpublished results.
- 36
- 36aL. Y. Wang, J. Luo, Q. Fan, M. Suzuki, I. S. Suzuki, M. H. Engelhard, Y. H. Lin, N. Kim, J. Q. Wang, C. J. Zhong, J. Phys. Chem. B 2005, 109, 21593;
- 36bH. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, S. H. Sun, Nano Lett. 2005, 5, 379.
- 37
- 37aW. S. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, Nat. Photonics 2007, 1, 224;
- 37bE. Coronado, J. R. Galan-Mascaros, C. J. Gomez-Garcia, V. Laukhin, Nature 2000, 408, 447;
- 37cC. B. Murray, S. H. Sun, W. Gaschler, H. Doyle, T. A. Betley, C. R. Kagan, IBM J. Res. Dev. 2001, 45, 47;
- 37dF. X. Redl, K. S. Cho, C. B. Murray, S. O’Brien, Nature 2003, 423, 968.
- 38
- 38aX. Q. Chi, D. T. Huang, Z. H. Zhao, Z. J. Zhou, Z. Y. Yin, J. H. Gao, Biomaterials 2012, 33, 189;
- 38bE. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, Appl. Phys. Lett. 2006, 89, 093120;
- 38cE. Cubukcu, N. F. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, F. Capasso, IEEE J. Sel. Top. Quantum Electron. 2008, 14, 1448;
- 38dX. H. Huang, P. K. Jain, I. H. El-Sayed, M. A. El-Sayed, Nanomedicine 2007, 2, 681;
- 38eH. Zeng, S. H. Sun, Adv. Funct. Mater. 2008, 18, 391.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.