Aqueous Anion Receptors through Reduction of Subcomponent Self-Assembled Structures†
Jesús Mosquera
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Search for more papers by this authorDr. Salvatore Zarra
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Search for more papers by this authorCorresponding Author
Dr. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.ukSearch for more papers by this authorJesús Mosquera
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Search for more papers by this authorDr. Salvatore Zarra
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Search for more papers by this authorCorresponding Author
Dr. Jonathan R. Nitschke
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.uk
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW (UK) http://www-jrn.ch.cam.ac.ukSearch for more papers by this authorThis work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC). J.M. thanks the Spanish MICINN for funding his PhD fellowship. The authors thank the EPSRC Mass Spectrometry Service at Swansea for conducting ESI-MS analysis and C. S. Wood for providing 4,4′-diformyl-3,3′-bipyridine employed in the initial experiments of the project.
Abstract
To prepare new functional covalent architectures that are difficult to synthesize using conventional organic methods, we developed a strategy that employs metal–organic assemblies as precursors, which are then reduced and demetalated. The host–guest chemistry of the larger receptor thus prepared was studied using NMR spectroscopy and fluorescence experiments. This host was observed to strongly bind aromatic polyanions in water, including the fluorescent dye molecule pyranine with nanomolar affinity, thus allowing for the design of an indicator-displacement assay.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange_201308117_sm_miscellaneous_information.pdf8.2 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. J. Hannon, C. L. Painting, A. Jackson, J. Hamblin, W. Errington, Chem. Commun. 1997, 1807–1808;
- 1bJ. Dömer, J. C. Slootweg, F. Hupka, K. Lammertsma, F. E. Hahn, Angew. Chem. 2010, 122, 6575–6578;
10.1002/ange.201002776 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 6430–6433;
- 1cV. E. Campbell, X. de Hatten, N. Delsuc, B. Kauffmann, I. Huc, J. R. Nitschke, Nat. Chem. 2010, 2, 684–687.
- 2
- 2aR. Chakrabarty, P. S. Mukherjee, P. J. Stang, Chem. Rev. 2011, 111, 6810–6918;
- 2bA. Granzhan, C. Schouwey, T. Riis-Johannessen, R. Scopelliti, K. Severin, J. Am. Chem. Soc. 2011, 133, 7106–7115;
- 2cX.-P. Zhou, J. Liu, S.-Z. Zhan, J.-R. Yang, D. Li, K.-M. Ng, R. W.-Y. Sun, C.-M. Che, J. Am. Chem. Soc. 2012, 134, 8042–8045;
- 2dS. Yi, V. Brega, B. Captain, A. E. Kaifer, Chem. Commun. 2012, 48, 10295–10297;
- 2eY. Wu, X.-P. Zhou, J.-R. Yang, D. Li, Chem. Commun. 2013, 49, 3413–3415;
- 2fT. K. Ronson, S. Zarra, S. P. Black, J. R. Nitschke, Chem. Commun. 2013, 49, 2476–2490.
- 3
- 3aK. Osowska, O. Š. Miljanić, Angew. Chem. 2011, 123, 8495–8499;
10.1002/ange.201102813 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 8345–8349;
- 3bM. E. Belowich, J. F. Stoddart, Chem. Soc. Rev. 2012, 41, 2003–2024.
- 4
- 4aA. Rit, T. Pape, F. E. Hahn, J. Am. Chem. Soc. 2010, 132, 4572–4573;
- 4bF. M. Conrady, R. Fröhlich, C. Schulte to Brinke, T. Pape, F. E. Hahn, J. Am. Chem. Soc. 2011, 133, 11496–11499;
- 4cM. Schmidtendorf, T. Pape, F. E. Hahn, Angew. Chem. 2012, 124, 2238–2241;
10.1002/ange.201107227 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 2195–2198.
- 5
- 5aE. W. Baxter, A. B. Reitz, Organic Reactions, Wiley, Hoboken, 2004;
- 5bM. I. Sánchez, O. Vázquez, J. Martínez-Costas, M. E. Vázquez, J. L. Mascareñas, Chem. Sci. 2012, 3, 2383–2387.
- 6
- 6aF. Aricó, T. Chang, S. J. Cantrill, S. I. Khan, J. F. Stoddart, Chem. Eur. J. 2005, 11, 4655–4666;
- 6bC. S. Hartley, E. L. Elliott, J. S. Moore, J. Am. Chem. Soc. 2007, 129, 4512–4513;
- 6cM. Mastalerz, Chem. Commun. 2008, 4756–4758;
- 6dI. Ravikumar, P. S. Lakshminarayanan, E. Suresh, P. Ghosh, Inorg. Chem. 2008, 47, 7992–7999;
- 6eA. Chin, M. Edgar, C. J. Harding, V. McKee, J. Nelson, Dalton Trans. 2009, 6315–6326;
- 6fM. Mastalerz, M. W. Schneider, I. M. Oppel, O. Presly, Angew. Chem. 2011, 123, 1078–1083; Angew. Chem. Int. Ed. 2011, 50, 1046–1051;
- 6gK. E. Jelfs, X. Wu, M. Schmidtmann, J. T. A. Jones, J. E. Warren, D. J. Adams, A. I. Cooper, Angew. Chem. 2011, 123, 10841–10844; Angew. Chem. Int. Ed. 2011, 50, 10653–10656.
- 7
- 7aP. J. Lusby, P. Müller, S. J. Pike, A. M. Z. Slawin, J. Am. Chem. Soc. 2009, 131, 16398–16400;
- 7bJ. Fan, M. Lal Saha, B. Song, H. Schönherr, M. Schmittel, J. Am. Chem. Soc. 2011, 133, 150–153;
- 7cJ. E. Beves, C. J. Campbell, D. A. Leigh, R. G. Pritchard, Angew. Chem. 2013, 125, 6592–6595;
10.1002/ange.201302634 Google ScholarAngew. Chem. Int. Ed. 2013, 52, 6464–6467.
- 8
- 8aS. L. Wiskur, H. Ait-Haddou, J. J. Lavigne, E. V. Anslyn, Acc. Chem. Res. 2001, 34, 963–972;
- 8bA. Buryak, K. Severin, J. Am. Chem. Soc. 2005, 127, 3700–3701;
- 8cJ. R. Hiscock, P. A. Gale, C. Caltagirone, M. B. Hursthouse, M. E. Light, Supramol. Chem. 2010, 22, 647–652;
- 8dV. Kumar, E. V. Anslyn, J. Am. Chem. Soc. 2013, 135, 6338–6344;
- 8eP. Sokkalingam, S.-J. Hong, A. Aydogan, J. L. Sessler, C.-H. Lee, Chem. Eur. J. 2013, 19, 5860–5867;
- 8fR. C. Knighton, M. R. Sambrook, J. C. Vincent, S. A. Smith, C. J. Serpell, J. Cookson, M. S. Vickers, P. D. Beer, Chem. Commun. 2013, 49, 2293–2295;
- 8gK. Kondo, A. Suzuki, M. Akita, M. Yoshizawa, Angew. Chem. 2013, 125, 2364–2368; Angew. Chem. Int. Ed. 2013, 52, 2308–2312.
- 9
- 9aR. Custelcean, J. Bosano, P. V. Bonnesen, V. Kertesz, B. P. Hay, Angew. Chem. 2009, 121, 4085–4089;
10.1002/ange.200900108 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 4025–4029;
- 9bY. Hua, A. H. Flood, Chem. Soc. Rev. 2010, 39, 1262–1271;
- 9cM. Wenzel, J. R. Hiscock, P. A. Gale, Chem. Soc. Rev. 2012, 41, 480–520;
- 9dH. T. Chifotides, K. R. Dunbar, Acc. Chem. Res. 2013, 46, 894–906;
- 9eH. T. Chifotides, I. D. Giles, K. R. Dunbar, J. Am. Chem. Soc. 2013, 135, 3039–3055.
- 10
- 10aF. P. Schmidtchen, Coord. Chem. Rev. 2006, 250, 2918–2928;
- 10bO. B. Berryman, V. S. Bryantsev, D. P. Stay, D. W. Johnson, B. P. Hay, J. Am. Chem. Soc. 2006, 128, 48–58;
- 10cP. Ballester, Chem. Soc. Rev. 2010, 39, 3810–3830;
- 10dP. A. Gale, Chem. Commun. 2011, 47, 82–86;
- 10eA. Frontera, Coord. Chem. Rev. 2013, 257, 1716–1727;
- 10fS. Lee, C.-H. Chen, A. H. Flood, Nat. Chem. 2013, 5, 704–710.
- 11
- 11aT. M. Garrett, T. J. McMurry, M. W. Hosseini, Z. E. Reyes, F. E. Hahn, K. N. Raymond, J. Am. Chem. Soc. 1991, 113, 2965–2977;
- 11bF. P. Schmidtchen, M. Berger, Chem. Rev. 1997, 97, 1609–1646.
- 12W. Meng, T. K. Ronson, J. K. Clegg, J. R. Nitschke, Angew. Chem. 2013, 125, 1051–1055; Angew. Chem. Int. Ed. 2013, 52, 1017–1021.
- 13A. J. Peters, K. S. Chichak, S. J. Cantrill, J. F. Stoddart, Chem. Commun. 2005, 3394.
- 14M. Hutin, C. A. Schalley, G. Bernardinelli, J. R. Nitschke, Chem. Eur. J. 2006, 12, 4069–4079.
- 15F. Milletti, L. Storchi, L. Goracci, S. Bendels, B. Wagner, M. Kansy, G. Cruciani, Eur. J. Med. Chem. 2010, 45, 4270–4279.
- 16J. Han, K. Burgess, Chem. Rev. 2009, 109, 2709–2728.
- 17
- 17aJ. Sharma, D. Tleugabulova, W. Czardybon, J. D. Brennan, J. Am. Chem. Soc. 2006, 128, 5496–5505;
- 17bH. Matsuo, J. Chevallier, N. Mayran, I. Le Blanc, C. Ferguson, J. Fauré, N. S. Blanc, S. Matile, J. Dubochet, R. Sadoul, R. G. Parton, F. Vilbois, J. Gruenberg, Science 2004, 303, 531–534;
- 17cC. Hille, M. Berg, L. Bressel, D. Munzke, P. Primus, H.-G. Löhmannsröben, C. Dosche, Anal. Bioanal. Chem. 2008, 391, 1871–1879.
- 18A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, Chem. Rev. 1997, 97, 1515–1566.
- 19CAChe WorkSystem Pro, Version 7.5.0.85 ed., Fujitsu Limited, 2000–2006.
- 20M. Whitehead, S. Turega, A. Stephenson, C. A. Hunter, M. D. Ward, Chem. Sci. 2013, 4, 2744–2751.
- 21M. D. Ward, P. R. Raithby, Chem. Soc. Rev. 2013, 42, 1619–1636.
- 22
- 22aF. P. Schmidtchen, Angew. Chem. 1981, 93, 469–470; Angew. Chem. Int. Ed. Engl. 1981, 20, 466–468;
- 22bD. Fiedler, D. H. Leung, R. G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005, 38, 349–358;
- 22cT. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012, 134, 162–164.
- 23
- 23aC. A. Strassert, M. Otter, R. Q. Albuquerque, A. Höne, Y. Vida, B. Maier, L. De Cola, Angew. Chem. 2009, 121, 8070–8073; Angew. Chem. Int. Ed. 2009, 48, 7928–7931;
- 23bF. Sgolastra, B. M. deRonde, J. M. Sarapas, A. Som, G. N. Tew, Acc. Chem. Res. 2013, DOI: .
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.