Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks†
Kahyun Hur
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Search for more papers by this authorYan Francescato
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorDr. Vincenzo Giannini
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorProf. Stefan A. Maier
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorProf. Richard G. Hennig
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Search for more papers by this authorCorresponding Author
Prof. Ulrich Wiesner
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)Search for more papers by this authorKahyun Hur
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Search for more papers by this authorYan Francescato
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorDr. Vincenzo Giannini
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorProf. Stefan A. Maier
Physics Department, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
Search for more papers by this authorProf. Richard G. Hennig
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Search for more papers by this authorCorresponding Author
Prof. Ulrich Wiesner
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)
Department of Material Science and Engineering, Cornell University, Ithaca, NY, 14853 (USA)Search for more papers by this authorThis publication is based on work supported in part by Award No. KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST). The calculations have been performed using computational resources of the Computational Center for Nanotechnology Innovation (CCNI) at Rensselaer Polytechnic Institute. The work was further supported by the National Science Foundation through the Materials World Network grant between the US (DMR-1008125) and Great Britain (Engineering and Physical Sciences Research Council).
Graphical Abstract
Metamaterialien sind künstliche Materialien, die neue Funktionalitäten wie höchstauflösende Bildgebung und optische Tarnung bieten. Präsentiert werden Berechnungen der photonischen Eigenschaften von dreidimensional isotropen Metamaterialien mit kubisch-doppeltgyroidalen und alternierenden gyroidalen Morphologien, die aus der Selbstorganisation von Blockcopolymeren hervorgehen.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
ange_201104888_sm_miscellaneous_information.pdf12.4 MB | miscellaneous_information |
ange_201104888_sm_supporting_movie_s1.mov1.9 MB | supporting_movie_s1 |
ange_201104888_sm_supporting_movie_s2.mov1.9 MB | supporting_movie_s2 |
ange_201104888_sm_supporting_movie_s3.mov1.9 MB | supporting_movie_s3 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, IEEE Trans. Microwave Theory Tech. 1999, 47, 2075–2084.
- 2D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 2000, 84, 4184; R. A. Shelby, D. R. Smith, S. Schultz, Science 2001, 292, 77–79; E. Verhagen, R. de Waele, L. Kuipers, A. Polman, Phys. Rev. Lett. 2010, 105, 223901; N. Liu, H. Giessen, Angew. Chem. 2010, 122, 10034–10049; Angew. Chem. Int. Ed. 2010, 49, 9838–9852.
- 3S. P. Burgos, R. de Waele, A. Polman, H. A. Atwater, Nat. Mater. 2010, 9, 407–412.
- 4V. G. Veselago, Sov. Phys. Usp. 1968, 10, 509; J. B. Pendry, Phys. Rev. Lett. 2000, 85, 3966; J. B. Pendry, D. Schurig, D. R. Smith, Science 2006, 312, 1780–1782.
- 5N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Nat. Mater. 2008, 7, 31–37; M. S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, M. Wegener, Nat. Mater. 2008, 7, 543–546.
- 6K. J. Stebe, E. Lewandowski, M. Ghosh, Science 2009, 325, 159–160; N. I. Zheludev, Science 2010, 328, 582–583; Q. Liu, Y. Cui, D. Gardner, X. Li, S. He, I. I. Smalyukh, Nano Lett. 2010, 10, 1347–1353.
- 7S. C. Warren, L. C. Messina, L. S. Slaughter, M. Kamperman, Q. Zhou, S. M. Gruner, F. J. DiSalvo, U. Wiesner, Science 2008, 320, 1748–1752; “Bioinspired Block Copolymer-Based Hybrid Materials”:
M. Kamperman, U. Wiesner in The Supramolecular Chemistry of Organic–Inorganic Hybrid Materials, Wiley, Hoboken, 2010.
10.1002/9780470552704.ch21 Google Scholar
- 8A. H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections, National Aeronautics and Space Administration [for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va.], Washington, 1970; S. Leoni, I. A. Baburin, Z. Kristallogr. 2011, 226, 678–683.
- 9R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University Press, Oxford, 2005.
- 10D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters, Macromolecules 1994, 27, 4063–4075; V. Z.-H. Chan, J. Hoffman, V. Y. Lee, H. Iatrou, A. Avgeropoulos, N. Hadjichristidis, R. D. Miller, E. L. Thomas, Science 1999, 286, 1716–1719; B.-K. Cho, A. Jain, S. M. Gruner, U. Wiesner, Science 2004, 305, 1598–1601; E. J. W. Crossland, M. Kamperman, M. Nedelcu, C. Ducati, U. Wiesner, D. M. Smilgies, G. E. S. Toombes, M. A. Hillmyer, S. Ludwigs, U. Steiner, H. J. Snaith, Nano Lett. 2009, 9, 2807–2812.
- 11Y. Grin, U. Wedig, H. G. von Schnering, Angew. Chem. 1995, 107, 1318–1320;
10.1002/ange.19951071112 Google ScholarAngew. Chem. Int. Ed. Engl. 1995, 34, 1204–1206; R. Pöttgen, V. Hlukhyy, A. Baranov, Y. Grin, Inorg. Chem. 2008, 47, 6051–6055.
- 12T. Hahn, H. Wondratschek, U. Müller in International Tables for Crystallography, 5th ed. (International Union of Crystallography), Kluwer, Dordrecht, 2002.
- 13H.-Y. Hsueh, Y.-C. Huang, R.-M. Ho, C.-H. Lai, T. Makida, H. Hasegawa, Adv. Mater. 2011, 23, 3041–3046; A. Radke, T. Gissibl, T. Klotzbücher, P. V. Braun, H. Giessen, Adv. Mater. 2011, 23, 3018–3021.
- 14M. M. Sigalas, C. T. Chan, K. M. Ho, C. M. Soukoulis, Phys. Rev. B 1995, 52, 11744.
- 15B. Prade, J. Y. Vinet, A. Mysyrowicz, Phys. Rev. B 1991, 44, 13556.
- 16A. J. Meuler, M. A. Hillmyer, F. S. Bates, Macromolecules 2009, 42, 7221–7250.
- 17M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, E. L. Thomas, Phys. Rev. B 2002, 65, 165123.
- 18M. W. Matsen, M. Schick, Phys. Rev. Lett. 1994, 72, 2660; K. Hur, R. G. Hennig, F. A. Escobedo, U. Wiesner, J. Chem. Phys. 2010, 133, 194108–194112.
- 19A. Raman, S. Fan, Phys. Rev. Lett. 2010, 104, 087401.
- 20http//www.comsol.com.
- 21M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, C. A. Ward, Appl. Opt. 1983, 22, 1099–1119.
- 22J. B. Pendry, J. Phys. Condens. Matter 1996, 8, 1085.
- 23J. D. Jackson, Classical Electrodynamics, 3rd ed., Wiley, New York, 1999.
- 24J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science 2009, 325, 1513–1515.
- 25P. B. Johnson, R. W. Christy, Phys. Rev. B 1972, 6, 4370.
- 26A. D. Raki, Appl. Opt. 1995, 34, 4755–4767.
- 27G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, Science 2006, 312, 892–894.
- 28J. D. Joannopoulos, Photonic Crystals: Molding the Flow of Light, 2nd ed., Princeton University Press, Princeton, 2008.
10.1515/9781400828241 Google Scholar
- 29C. A. Tyler, J. Qin, F. S. Bates, D. C. Morse, Macromolecules 2007, 40, 4654–4668.
- 30V. Kuzmiak, A. A. Maradudin, F. Pincemin, Phys. Rev. B 1994, 50, 16835.
- 31A. C. Finnefrock, R. Ulrich, A. Du Chesne, C. C. Honeker, K. Schumacher, K. K. Unger, S. M. Gruner, U. Wiesner, Angew. Chem. 2001, 113, 1247–1251;
10.1002/1521-3757(20010401)113:7<1247::AID-ANGE1247>3.0.CO;2-X Google ScholarAngew. Chem. Int. Ed. 2001, 40, 1207–1211; A. C. Finnefrock, R. Ulrich, G. E. S. Toombes, S. M. Gruner, U. Wiesner, J. Am. Chem. Soc. 2003, 125, 13084–13093.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.