Probing the Mechanism of Olefin Metathesis in Grubbs–Hoveyda and Grela Type Complexes†
Tim Vorfalt Dipl.-Ing.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorKlaus-Jürgen Wannowius Dr.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorHerbert Plenio Prof. Dr.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorTim Vorfalt Dipl.-Ing.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorKlaus-Jürgen Wannowius Dr.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorHerbert Plenio Prof. Dr.
Organometallic Chemistry, Technische Universität Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany)
Search for more papers by this authorThis work was supported by the DFG via Pl 178/8-3.
Graphical Abstract
Je mehr, desto besser: Kinetische Daten aus UV/Vis-Messungen liefern schlüssige Hinweise für die Beteiligung des olefinischen Substrats am geschwindigkeitsbestimmenden Schritt der Initiierungsreaktion von Olefinmetathesekatalysatoren vom Grubbs-Hoveyda-Typ sowie für einen zweiten, Olefin-unabhängigen Schritt, der nur bei sehr hohen Olefinkonzentrationen geschwindigkeitsbestimmend wird.
Supporting Information
Detailed facts of importance to specialist readers are published as ”Supporting Information”. Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors.
Filename | Description |
---|---|
ange_201000581_sm_miscellaneous_information.pdf6.8 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Chauvin, Angew. Chem. 2006, 118, 3824–3831;
10.1002/ange.200601234 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3740–3747;
- 1bR. R. Schrock, Angew. Chem. 2006, 118, 3832–3844;
10.1002/ange.200600085 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3748–3759;
- 1cR. H. Grubbs, Angew. Chem. 2006, 118, 3845–3850;
10.1002/ange.200600680 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 3760–3765.
- 2
- 2aM. S. Sanford, J. A. Love, R. H. Grubbs, J. Am. Chem. Soc. 2001, 123, 6543–6554;
- 2bJ. A. Love, M. S. Sanford, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2003, 125, 10103–10109;
- 2cS. H. Hong, A. G. Wenzel, T. T. Salguero, M. W. Day, R. H. Grubbs, J. Am. Chem. Soc. 2007, 129, 7961–7968;
- 2dE. M. Leitao, E. F. v. d. Eide, P. E. Romero, E. P. Warren, R. McDonald, J. Am. Chem. Soc. 2010, 132, 2784–2794.
- 3
- 3aJ. S. Kingsbury, J. P. A. Harrity, P. J. Bonitatebus, A. H. Hoveyda, J. Am. Chem. Soc. 1999, 121, 791–799;
- 3bS. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda, J. Am. Chem. Soc. 2000, 122, 8168–8179.
- 4
- 4aA. H. Hoveyda, D. G. Gillingham, J. J. V. Veldhuizen, O. Kataoka, S. B. Garber, J. S. Kingsbury, J. P. A. Harrity, Org. Biomol. Chem. 2004, 2, 8–23;
- 4bA. H. Hoveyda, A. R. Zhugralin, Nature 2007, 450, 243–251;
- 4cA. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos, K. Grela, J. Am. Chem. Soc. 2004, 126, 9318;
- 4dK. Grela, S. Harutyunyan, A. Michrowska, Angew. Chem. 2002, 114, 4210–4212;
10.1002/1521-3757(20021104)114:21<4210::AID-ANGE4210>3.0.CO;2-J Google ScholarAngew. Chem. Int. Ed. 2002, 41, 4038–4040;10.1002/1521-3773(20021104)41:21<4038::AID-ANIE4038>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 4eH. Wakamatsu, S. Blechert, Angew. Chem. 2002, 114, 2509–2511;
10.1002/1521-3757(20020703)114:13<2509::AID-ANGE2509>3.0.CO;2-E Google ScholarAngew. Chem. Int. Ed. 2002, 41, 2401–2403.
- 5
- 5aM. Ahmed, A. G. M. Barrett, D. C. Braddock, S. M. Cramp, P. A. Procopiou, Tetrahedron Lett. 1999, 40, 8657–8662;
- 5bJ. S. Kingsbury, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 4510–4517.
- 6M. Gatti, L. Vieille-Petit, X. Luan, R. Mariz, E. Drinkel, A. Linden, R. Dorta, J. Am. Chem. Soc. 2009, 131, 9498–9499.
- 7K. M. Kuhn, J.-B. Bourg, C. K. Chung, S. C. Virgil, R. H. Grubbs, J. Am. Chem. Soc. 2009, 131, 5313–5320.
- 8K. Getty, M. U. Delgado-Jaime, P. Kennepohl, J. Am. Chem. Soc. 2007, 129, 15774–15776.
- 9Grubbs et al.[2a] suggested that the 500 nm absorption is due to metal-to-ligand charge-transfer into the π* orbital of the RuCHR bond. More recently Kennepohl et al.[8] provided DFT calculations, on the basis of which a d–d transition can also be considered.
- 10G. C. Vougioukalakis, R. H. Grubbs, Chem. Eur. J. 2008, 14, 7545–7556. In this paper first-order rate constants were used to obtain the entropy of activation.
- 11For a detailed explanation of the two kinetic methods employed, see Supporting Information.
- 12R. G. Wilkins, The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCH, Weinheim, 1991.
10.1002/3527600825 Google Scholar
- 13All experiments at high and low substrate concentration were carried out with exactly the same amount of precatalyst.
- 14J. E. Williams, M. J. Harner, M. B. Sponsler, Organometallics 2005, 24, 2013–2015.
- 15For an explanation of when which kinetic method was applied, see Supporting Information.
- 16S. Monfette, D. E. Fogg, Chem. Rev. 2009, 109, 3783–3816.
- 17C. Adlhart, P. Chen, J. Am. Chem. Soc. 2004, 126, 3496–3510.
- 18The same k1 can also be obtained from the decrease in the 375 nm absorbance.
- 19A referee noted that the reason saturation kinetics cannot be observed is the high effective molarity of the isopropoxy group; a sufficiently high concentration of external ligand to outcompete rebinding to form the chelate cannot be attained.
- 20Preliminary studies with electron-deficient olefins (dichloro ethenes) reveal significantly reduced rates k1 (10–100 times slower), and thus support the Ia character of this reaction.
- 21
- 21aP. E. Romero, W. E. Piers, J. Am. Chem. Soc. 2005, 127, 5032–5033;
- 21bE. F. van der Eide, P. E. Romero, W. E. Piers, J. Am. Chem. Soc. 2008, 130, 4485–4491.
- 22C. N. Rowley, E. F. van der Eide, W. E. Piers, T. K. Woo, Organometallics 2008, 27, 6043–6045.
- 23The equilibrium constant for complex 1 was also determined through 1H NMR integrals to be K=68 M−1.
- 24The synthesis of 1⋅PCy3 was reported by a reaction sequence not involving an excess of PCy3. S. Gessler, S. Randl, S. Blechert, Tetrahedron Lett. 2000, 41, 9973–9976.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.