Side-Wall Opening of Single-Walled Carbon Nanotubes (SWCNTs) by Chemical Modification: A Critical Theoretical Study†
Zhongfang Chen Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA
Search for more papers by this authorShigeru Nagase Prof. Dr.
Department of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan
Search for more papers by this authorAndreas Hirsch Prof. Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Search for more papers by this authorRobert C Haddon Prof. Dr.
Departments of Chemical and Environmental Engineering and Chemistry and Center for Nanoscale Science & Engineering, University of California, Riverside, CA 92521, USA
Search for more papers by this authorWalter Thiel Prof. Dr.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 M ülheim an der Ruhr, Germany
Search for more papers by this authorPaul von Ragué Schleyer Prof. Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA
Search for more papers by this authorZhongfang Chen Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA
Search for more papers by this authorShigeru Nagase Prof. Dr.
Department of Theoretical Studies, Institute for Molecular Science, Okazaki 444-8585, Japan
Search for more papers by this authorAndreas Hirsch Prof. Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Search for more papers by this authorRobert C Haddon Prof. Dr.
Departments of Chemical and Environmental Engineering and Chemistry and Center for Nanoscale Science & Engineering, University of California, Riverside, CA 92521, USA
Search for more papers by this authorWalter Thiel Prof. Dr.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 M ülheim an der Ruhr, Germany
Search for more papers by this authorPaul von Ragué Schleyer Prof. Dr.
Institut für Organische Chemie, Universität Erlangen-Nürnberg, Henkestrasse 42, 91054 Erlangen, Germany, Fax: (+49) 9131-85-26864
Department of Chemistry and Center for Computational Quantum Chemistry, University of Georgia, Athens, GA 30602, USA
Search for more papers by this authorThis work was supported by National Science Foundation Grant CHE-0209857, the University of Georgia, the Grant-in Aid for NAREGI Nanoscience Project, Scientific Research (B), and Scientific Research on Priority Area (A) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and FORCARBON.
Graphical Abstract
Rohr oder Röhrchen? Entgegen früheren theoretischen Untersuchungen ergaben Dichtefunktionalrechnungen (B3LYP/6-31G*) an unterschiedlichen Nanoröhrenmodellen, dass SWCNTs mit O-, NH-, CH2- und SiH2-Addenden offene Strukturen gegenüber Dreiringen bevorzugen. Ferner sind in (8,0)-Zickzack-Nanoröhren die diagonalen C-C-Bindungen, und nicht die C-C-Bindungen parallel zur Achse, die bevorzugten Angriffspunkte für chemische Modifizierungen.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2001/2004/z53087_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1See recent reviews:
- 1aR. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787–792;
- 1bP. M. Ajayan, Chem. Rev. 1999, 99, 1787–1799;
- 1cGuest editor R. C. Haddon, special issue on nanotubes in Acc. Chem. Res. 2002, 35, 997–1113.
- 2
- 2aJ. L. Bahr, J. M. Tour, J. Mater. Chem. 2002, 12, 1952–1958;
- 2bS. B. Sinnott, J. Nanosci. Nanotechnol. 2002, 2, 113–123;
- 2cA. Hirsch, Angew. Chem. 2002, 114, 1933–1939;
10.1002/1521-3757(20020603)114:11<1933::AID-ANGE1933>3.0.CO;2-R Google ScholarAngew. Chem. Int. Ed. 2002, 41, 1853–1859;10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 2dS. Banerjee, M. G. C. Kahn, S. S. Wong, Chem. Eur. J. 2003, 9, 1898–1908.
- 3For example, S. Banerjee, S. S. Wong, J. Phys. Chem. B 2002, 106, 12 144–12 151.
- 4P. G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 2000, 287, 1801–1804.
- 5
- 5aJ. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, R. C. Haddon, Science 1998, 282, 95–98;
- 5bK. Kamaras, M. E. Itkis, H. Hu, B. Zhao, R. C. Haddon, Science 2003, 301, 1501–1501;
- 5cH. Hu, B. Zhao, M. A. Hamon, K. Kamaras, M. E. Itkis, R. C. Haddon, J. Am. Chem. Soc. 2003, 125, 14 893–14 900.
- 6M. Holzinger, J. Abraham, P. Whelan, R. Graupner, L. Ley, F. Hennrich, M. Kappes, A. Hirsch, J. Am. Chem. Soc. 2003, 125, 8566–8580.
- 7
- 7aX. Lu, L. L. Zhang, X. Xu, N. Q. Wang, Q. Zhang, J. Phys. Chem. B 2002, 106, 2136–2139;
- 7bS. Irle, A. Mews, K. Morokuma, J. Phys. Chem. A 2002, 106, 11 973–11 980;
- 7cS. P. Walch, Chem. Phys. Lett. 2003, 374, 501–505;
- 7dD. C. Sorescu, K. D. Jordan, P. Avouris, J. Phys. Chem. B 2001, 105, 11 227–11 232;
- 7eS. Dag, O. Gülseren, T. Yildirim, S. Ciraci, Phys. Rev. B 2003, 67, 165 424/1–10;
- 7fD. J. Mann, M. D. Halls, J. Chem. Phys. 2002, 116, 9014–9020;
- 7gS. P. Chan, G. Chen, X. G. Gong, Z. F. Liu, Phys. Rev. Lett. 2003, 90, 086 403/1–4.
- 8R. F. Li, Z. F. Shang, G. C. Wang, Y. M. Pan, Z. S. Cai, X. Z. Zhao, J. Mol. Struct. (Theochem) 2002, 583, 241–247.
- 9For example,
- 9aF. Nunzi, F. Mercuri, A. Sgamellotti, N. Re, J. Phys. Chem. B 2002, 106, 10 622–10 633;
- 9bZ. Chen, A. Hirsch, W. Thiel, ChemPhysChem 2003, 4, 93–97.
- 10
- 10aM. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. Morokuma, J. Phys. Chem. 1996, 100, 19 357–19 363;
- 10bS. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, M. J. Frisch, J. Mol. Struct. (Theochem) 1999, 461– 462, 1–21.
- 11For example
- 11aX. Lu, F. Tian, N. Q. Wang, Q. Zhang, Org. Lett. 2002, 4, 4313–4315;
- 11bX. Lu, F. Tian, Y. B. Feng, X. Xu, N. Q. Wang, Q. Zhang, Nano Lett. 2002, 2, 1325–1327;
- 11cX. Lu, F. Tian, X. Xu, N. Q. Wang, Q. Zhang, J. Am. Chem. Soc. 2003, 125, 10 459–10 464;
- 11dX. Lu, Q. Yuan, Q. Zhang, Org. Lett. 2003, 5, 3527–3530;
- 11eL. Long, X. Lu, F. Tian, Q. Zhang, J. Org. Chem. 2003, 68, 4495–4498;
- 11fX. Lu, F. Tian, Q. Zhang, J. Phys. Chem. B 2003, 107, 8388–8391;
- 11gC. W. Bauschlicher, Chem. Phys. Lett. 2000, 322, 237–241;
- 11hC. W. Bauschlicher, Nano Lett. 2001, 1, 223–226;
- 11iG. E. Froudakis, Nano Lett. 2001, 1, 531–533;
- 11jV. A. Basiuk, E. V. Basiuk, J. M. Saniger-Blesa, Nano Lett. 2001, 1, 657–661;
- 11kV. A. Basiuk, Nano Lett. 2002, 2, 835–839;
- 11lC. W. Bauschlicher, C. R. So, Nano Lett. 2002, 2, 337–341;
- 11mE. V. Basiuk, V. A. Basiuk, J. G. Banuelos, J. M. Saniger-Blesa, V. A. Pokrovskiy, T. Y. Gromovoy, A. V. Mischanchuk, B. G. Mischanchuk, J. Phys. Chem. B 2002, 106, 1588–1597;
- 11nA. Ricca, J. A. Drocco, Chem. Phys. Lett. 2002, 362, 217–223;
- 11oV. A. Basiuk, J. Phys. Chem. B 2003, 107, 8890–8897.
- 12Gaussian 98 (Revision A.11), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
- 13H. Jiao, N. J. R. v. E. Hommes, P. v. R. Schleyer, Org. Lett. 2002, 4, 2393–2396.
- 14The open structure for six-layered (6,6) dioxide was obtained at B3LYP/6-31G* level. A minimum with a central closed 3MR can be located at HF/3-21G level, which, upon elongation of the distance between carbon atoms in this 3MR, is transformed into another minimum with two open 3MRs that is more stable by 14 kcal mol−1. For the optimized structures see the Supporting Information.
- 15K. Morokuma, D. G. Musaev, T. Vreven, H. Basch, M. Torrent, D. V. Khoroshun, IBM J. Res. Dev. 2001, 45, 367–395.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.