Improving the Performance of Cooling and Entanglement in a Double Cavity Optomechanical System Assisted by the Quantum Coherent Feedback
Yuan Chen
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
Department of Applied Physics, East China Jiaotong University, Nanchang, Jiangxi, 330013 China
Search for more papers by this authorCorresponding Author
Ai-Xi Chen
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]
Search for more papers by this authorYuan Chen
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
Department of Applied Physics, East China Jiaotong University, Nanchang, Jiangxi, 330013 China
Search for more papers by this authorCorresponding Author
Ai-Xi Chen
School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
Department of Physics, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018 China
E-mail: [email protected]
Search for more papers by this authorAbstract
A theoretical scheme is proposed for improving the performance of cooling and entanglement, where the physical model is based on a double cavity optomechanical system assisted by the field-mediated coherent feedback. The cooling performance is evaluated by calculating the final mean phonon number. The steady-state bipartite entanglement between the optical mode and mechanical mode is measured by the logarithmic negativity. The result manifests that with assistance of the quantum coherent feedback, the mechanical resonator (MR) can be cooled close to its quantum ground state and the steady-state optomechanical entanglement is simultaneously created, all of which are obtained under the condition beyond the resolved sideband. The presented feedback strategy is measurement-independent, which can effectively preserve the quantum coherence of system. The scheme is conducive to relaxing the current experimental condition and it may provide a new path for the optomechanical manipulation involving the low-frequency MR.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
References
- 1M. Poot, H. S. van der Zant, Phys. Reports 2012, 511, 273.
10.1016/j.physrep.2011.12.004 Google Scholar
- 2M. Aspelmeyer, T. J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 2014, 86, 1391.
- 3A. Schliesser, G. Anetsberger, R. Rivière, O. Arcizet, T. J. Kippenberg, New J. Phys. 2008, 10, 095015.
- 4J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, Nat. Nanotechnol. 2009, 4, 820.
- 5S. K. Singh, M. Mazaheri, J.-X. Peng, A. Sohail, M. Khalid, M. Asjad, Front. Phys. 2023, 11, 1142452.
- 6K. Jensen, K. Kim, A. Zettl, Nat. Nanotechnol. 2008, 3, 533.
- 7B.-B. Li, J. Bílek, U. B. Hoff, L. S. Madsen, S. Forstner, V. Prakash, C. Schäfermeier, T. Gehring, W. P. Bowen, U. L. Andersen, Optica 2018, 5, 850.
- 8A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter, Nat. Photon. 2012, 6, 768.
- 9D. Hu, S.-Y. Huang, J.-Q. Liao, L. Tian, H.-S. Goan, Phys. Rev. A 2015, 91, 013812.
10.1103/PhysRevA.91.013812 Google Scholar
- 10T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, C. A. Regal, Phys. Rev. X 2013, 3, 031012.
- 11S. K. Singh, M. Mazaheri, J.-X. Peng, A. Sohail, Z. Gu, M. Asjad, Quantum Inf. Process. 2023, 22, 198.
- 12K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, P. Zoller, Phys. Rev. A 2009, 79, 063819.
- 13D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 2007, 98, 030405.
- 14A. Sohail, M. Rana, S. Ikram, T. Munir, T. Hussain, R. Ahmed, C.-s. Yu, Quantum Inf. Process. 2020, 19, 372.
- 15I. Wilson-Rae, N. Nooshi, W. Zwerger, T. J. Kippenberg, Phys. Rev. Lett. 2007, 99, 093901.
- 16F. Marquardt, J. P. Chen, A. A. Clerk, S. M. Girvin, Phys. Rev. Lett. 2007, 99, 093902.
- 17J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, Nature 2011, 475, 359.
- 18J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Nature 2011, 478, 89.
- 19C. Genes, H. Ritsch, D. Vitali, Phys. Rev. A 2009, 80, 061803.
- 20X. Chen, Y.-C. Liu, P. Peng, Y. Zhi, Y.-F. Xiao, Phys. Rev. A 2015, 92, 033841.
- 21Y. Guo, K. Li, W. Nie, Y. Li, Phys. Rev. A 2014, 90, 053841.
- 22Y.-C. Liu, Y.-F. Xiao, X. Luan, Q. Gong, C. W. Wong, Phys. Rev. A 2015, 91, 033818.
- 23Y.-X. Zhang, S. Wu, Z.-B. Chen, Y. Shikano, Phys. Rev. A 2016, 94, 023823.
- 24T. Ojanen, K. Børkje, Phys. Rev. A 2014, 90, 013824.
- 25Y.-C. Liu, Y.-F. Xiao, X. Luan, C. W. Wong, Sci. China Phys. Mech. Astron. 2015, 58, 1.
- 26J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, J. D. Teufel, Nature 2017, 541, 191.
- 27J.-H. Gan, Y.-C. Liu, C. Lu, X. Wang, M. K. Tey, L. You, Laser Photonics Rev. 2019, 13, 1900120.
- 28O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Français, L. Rousseau, Phys. Rev. Lett. 2006, 97, 133601.
- 29M. Poggio, C. L. Degen, H. J. Mamin, D. Rugar, Phys. Rev. Lett. 2007, 99, 017201.
- 30D. Kleckner, D. Bouwmeester, Nature 2006, 444, 75.
- 31C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, Phys. Rev. A 2008, 77, 033804.
- 32J. A. Jones, D. Jaksch, Quantum Information, Computation and Communication, Cambridge University Press, Cambridge 2012.
10.1017/CBO9781139028509 Google Scholar
- 33Y.-L. Liu, Z.-P. Liu, J. Zhang, J. Phys. B: At. Mol. Opt. Phys. 2015, 48, 105501.
10.1088/0953-4075/48/10/105501 Google Scholar
- 34J. Li, G. Li, S. Zippilli, D. Vitali, T. Zhang, Phys. Rev. A 2017, 95, 043819.
- 35S. Huang, A. Chen, Appl. Sci. 2019, 9, 16.
- 36A. Harwood, M. Brunelli, A. Serafini, Phys. Rev. A 2021, 103, 023509.
- 37D. Mansouri, B. Rezaie, A. R. N, A. Daeichian, J. Phys. B: At. Mol. Opt. Phys 2022, 55, 165501.
- 38J. Guo, J. Chang, X. Yao, S. Gröblacher, Nat. Commun. 2023, 14, 4721.
- 39J. Zhang, R.-B. Wu, Y.-X. Liu, C.-W. Li, T.-J. Tarn, IEEE Trans. Automat. Contr. 2012, 57, 1997.
- 40M. O. Scully, M. S. Zubairy, Quantum optics, Cambridge University Press, Cambridge 1997.
10.1017/CBO9780511813993 Google Scholar
- 41J. Gough, M. R. James, Commun. Math. Sci. 2009, 287, 1109.
10.1007/s00220-008-0698-8 Google Scholar
- 42J. Gough, M. R. James, IEEE Trans. Automat. Contr. 2009, 54, 2530.
- 43Z.-P. Liu, H. Wang, J. Zhang, Y.-x. Liu, R.-B. Wu, C.-W. Li, F. Nori, Phys. Rev. A 2013, 88, 063851.
- 44H. Mabuchi, Phys. Rev. A 2008, 78, 032323.
- 45J. Zhang, Y.-x. Liu, R.-B. Wu, K. Jacobs, F. Nori, Phys. Rev. A 2013, 87, 032117.
- 46Y.-C. Liu, Y.-W. Hu, C. W. Wong, Y.-F. Xiao, Chin. Phys. B 2013, 22, 114213.
- 47T. J. Kippenberg, K. J. Vahala, Science 2008, 321, 1172.
- 48E. X. DeJesus, C. Kaufman, Phys. Rev. A 1987, 35, 5288.
- 49Y. Li, Y.-D. Wang, F. Xue, C. Bruder, Phys. Rev. B 2008, 78, 134301.
10.1103/PhysRevB.78.134301 Google Scholar
- 50Y.-C. Liu, Y.-F. Xiao, X. Luan, C. W. Wong, Phys. Rev. Lett. 2013, 110, 153606.
- 51S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, Nature 2009, 460, 724.
- 52P. Meystre, Ann. Phys. 2013, 525, 215.
- 53G. Vidal, R. F. Werner, Phys. Rev. A 2002, 65, 032314.
- 54C. Genes, A. Mari, P. Tombesi, D. Vitali, Phys. Rev. A 2008, 78, 032316.