Control of Correlation Using Confinement in Case of Quantum System
Kirtee Kumar
Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 India
Department of Physics, Kirori Mal College, University of Delhi, Delhi, 110007 India
Search for more papers by this authorCorresponding Author
Vinod Prasad
Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi, 110036 India
E-mail: [email protected]
Search for more papers by this authorKirtee Kumar
Department of Physics and Astrophysics, University of Delhi, Delhi, 110007 India
Department of Physics, Kirori Mal College, University of Delhi, Delhi, 110007 India
Search for more papers by this authorCorresponding Author
Vinod Prasad
Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi, 110036 India
E-mail: [email protected]
Search for more papers by this authorAbstract
This article investigates the behavior of a Moshinsky atom in a 1D harmonic trap. Focus is given on the theoretical foundations of confinement and its impact on the correlation between particles in the Moshinsky atom. The investigation begins by illustrating the (de)localization of the probability density function using Shannon entropy. The basics of correlation and interpretation of correlation using tools such as mutual information and statistical correlation coefficients and how these can be quantified are discussed. Then the concept of confinement is explored. The impact of interaction strength and confinement on Shannon entropy, statistical correlation coefficients, and mutual information is investigated. How interaction strength and confinement can be used to induce correlations between previously uncorrelated particles, as well as how they can be used to suppress correlations between previously correlated particles is discussed. Their implications for quantum information processing and quantum simulation are discussed. In conclusion, confinement is a powerful tool for controlling correlations in quantum systems, and its impact on correlation can be understood through theoretical models. The importance of experimental studies in this field, which provide insights into the behavior of quantum systems under confinement and pave the way for future applications in quantum technology is also emphasized.
Conflict of Interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1P.-O. Löwdin, Adv. Chem. Phys. 1959, 2, 207.
- 2W. Kutzelnigg, G. Del Re, G. Berthier, Phys. Rev. 1968, 172, 49.
- 3D. S. Abrams, S. Lloyd, Phys. Rev. Lett. 1997, 79, 2586.
- 4J. K. Stockton, J. M. Geremia, A. C. Doherty, H. Mabuchi, Phys. Rev. A 2003, 67, 022112.
- 5I. M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys 2014, 86, 153.
- 6A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, J. M. Gambetta, Nature 2017, 549, 242.
- 7Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, A. Aspuru-Guzik, Chem. Rev. 2019, 119, 10856.
- 8S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, X. Yuan, Rev. Mod. Phys. 2020, 92, 015003.
- 9B. Bauer, S. Bravyi, M. Motta, G. K.-L. Chan, Chem. Rev. 2020, 120, 12685.
- 10A. Burchardt, J. Czartowski, K. Zyczkowski, Phys. Rev. A 2021, 104, 022426.
- 11S. Barison, D. E. Galli, M. Motta, Phys. Rev. A 2022, 106, 022404.
- 12M. Moshinsky, Am. J. Phys. 1968, 36, 52.
- 13M. Moshinsky, Am. J. Phys. 1968, 36, 763.
- 14H. G. Laguna, R. P. Sagar, Phys. Rev. A 2011, 84, 012502.
- 15H. G. Laguna, R. P. Sagar, J. Phys. A: Math. Theor. 2012, 45, 025307.
10.1088/1751-8113/45/2/025307 Google Scholar
- 16H. G. Laguna, R. P. Sagar, Physica A 2014, 396, 267.
- 17H. G. Laguna, R. P. Sagar, D. G. Tempel, A. Aspuru-Guzik, Phys. Chem. Chem. Phys. 2016, 18, 436.
- 18G. Adesso, T. R Bromley, M. Cianciaruso, J. Phys. A: Math. Theor. 2016, 49, 473001.
- 19V. S. Yepez, R. P. Sagar, H. G. Laguna, Few-Body Syst. 2017, 58, 158.
- 20S. J. C. Salazar, H. G. Laguna, R. P. Sagar, Phys. Rev. A 2020, 101, 042105.
- 21S. J. C. Salazar, H. G. Laguna, R. P. Sagar, Eur. Phys. J. Plus 2020, 74, 241.
- 22M. Fadel, A. Usui, M. Huber, N. Friis, G. Vitagliano, Phys. Rev. Lett. 2021, 127, 010401.
- 23S. J. C. Salazar, H. G. Laguna, R. P. Sagar, Eur. Phys. J. Plus 2022, 137, 19.
- 24Y.-C. Lin, P.-Y. Yang, W. -M. Zhang, Sci. Rep. 2016, 6, 34804.
- 25A. Michels, J. de Boer, A. Bijl, Physica 1937, 4, 981.
- 26W. Jaskolski, Phys. Rep. 1996, 271, 1.
- 27A. L. Buchachenko, J. Phys. Chem. B 2001, 105, 5839.
- 28K. D. Sen, Electronic Structure of Quantum Confined Atoms and Molecules, Springer, Berlin 2014.
10.1007/978-3-319-09982-8 Google Scholar
- 29E. L. Koo, Rev. Mex. Fis. 2018, 64, 326.
- 30J. P. Connerade, Eur. Phys. J. D 2020, 74, 211.
- 31P. C. Deshmukh, J. Jose, H. R. Varma, S. T. Manson, Eur. Phys. J. D 2021, 75, 166.
- 32K. D. Sen, J. Chem. Phys. 2005, 122, 194324.
- 33S. Lumb, S. Lumb, V. Prasad, Phys. Rev. A 2014, 90, 032505.
- 34S. Lumb, S. Lumb, V. Prasad, Phys. Lett. A 2015, 379, 1263.
- 35C. M. Flores, R. C. Trujillo, Matter Radiat. Extremes 2018, 3, 227.
- 36M. A. M. Sánchez, R. Vargas, J. Garza, Quantum Rep. 2019, 1, 208.
10.3390/quantum1020018 Google Scholar
- 37S. L. Talwar, S. Lumb, K. D. Sen, V. Prasad, Phys. Scr. 2020, 95, 035404.
- 38M. K. Bahar, Ann. Phys. 2021, 533, 2100111.
- 39N. Mukherjee, C. N. Patra, A. K. Roy, Phys. Rev. A 2022, 106, 032812.
- 40A. de J. Santos, F. V. Prudente, M. N. Guimaraes, W. S. Nascimento, Quant. Rep. 2022, 4, 544.
10.3390/quantum4040039 Google Scholar
- 41K. D. Sen, K. Kumar, C. Yadav, V. Prasad, Eur. Phys. J. D 2022, 137, 78.
- 42M. K. Bahar, Eur. Phys. J. Plus 2022, 137, 1076.
- 43H. E. Montgomery Jr, N. A. Aquino, K. D. Sen, Int. J. Quantum Chem. 2007, 107, 798.
- 44N. Aquino, E. Cruz, Rev. Mex. Fis. 2017, 63, 580.
- 45D. Baye, K. D. Sen, Phys. Rev. E 2008, 78, 026701.
- 46S. Lumb, S. Lumb, V. Prasad, Eur. Phys. J. Plus 2015, 130, 149.
- 47D. Munja, P. Silotia, V. Prasad, Phys. Plasmas 2017, 24, 122118.
10.1063/1.5008949 Google Scholar
- 48S. Saha, J. Jose, Phys. Rev. A 2020, 102, 052824.
- 49N. Mukherjee, A. K. Roy, Phys. Rev. A 2021, 104, 042803.
- 50K. Kumar, V. Prasad, Results Phys. 2021, 21, 103796.
10.1016/j.rinp.2020.103796 Google Scholar
- 51W. S. Nascimento, M. M. de Almeida, F. V. Prudente, Eur. Phys. J. D 2021, 75, 171.
- 52Z. L. Zhou, R. Y. Zheng, L. G. Jiao, A. Liu, H. E. Montgomery Jr, Y. K. Ho, Int. J. Quantum Chem. 2023, 123, e27085.
- 53M. Arora, R. Giri, Varsha, K. Kumar, C. Yadav, B. Vidhani, M. Gambhir, V. Prasad, Results Phys. 2023, 45, 106225.
- 54C. E. Shannon, Bell Syst. Tech. J. 1948, 27, 379.
- 55E. Romera, P. Sanchez-Moreno, J. S. Dehesa, Chem. Phys. Lett. 2005, 414, 468.
- 56G. H. Sun, S. H. Dong, Phys. Scr. 2013, 87, 045003.
- 57M. S. Abdelmonem, A. H. Afaf, I. Nasser, Mol. Phys. 2017, 115, 1480.
- 58A. Hertz, M. G. Jabbour, N. J. Cerf, J. Phys. A 2017, 50, 385301.
10.1088/1751-8121/aa852f Google Scholar
- 59S. Majumdar, N. Mukherjee, A. K. Roy, Chem. Phys. Lett. 2019, 716, 257.
- 60N. L. Guevara, R. P. Sagar, R. O. Esquivel, Phys. Rev. A 2003, 67, 012507.
- 61P. Karafiloglou, C. P. Panos, Chem. Phys. Lett. 2004, 389, 400.
- 62Z. Chen, C. S. Wannere Corminboeuf, R. Puchta, P. V. R. Schleyer, Chem. Rev. 2005, 105, 3842.
- 63M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK 2005.
- 64K. D. Sen, J. Chem. Phys. 2005, 123, 074110.
- 65S. H. Patil, K. D. Sen, N. A. Watson, H. E. Montgomery Jr, J. Phys. B: At. Mol. Opt. Phys. 2007, 40, 2147.
- 66H. G. Laguna, R. P. Sagar, Int. J. Quantum Inf 2010, 8, 1089.
- 67H. G. Laguna, R. P. Sagar, Ann. Phys. 2014, 526, 555.
- 68D. Munjal, K. D. Sen, V. Prasad, J. Phys. Commun. 2018, 2, 025002.
- 69S. J. C. Salazar, H. G. Laguna, V. Prasad, R. P. Sagar, Int. J. Quantum Chem. 2020, 120, e26188.
- 70S. J. C. Salazar, H. G. Laguna, B. Dahiya, V. Prasad, R. P. Sagar, Eur. Phys. J. D 2021, 75, 127.
- 71B. Dahiya, K. Kumar, V. Prasad, Eur. Phys. J. Plus 2021, 136, 1031.
- 72K. Kumar, V. Prasad, Sci. Rep. 2022, 12, 7496.
- 73N. L. Guevara, R. P. Sagar, R. O. Esquivel, J. Chem. Phys. 2003, 119, 7030.
- 74S. López-Rosa, A. L. Martín, J. Antolín, J. C. Angulo, Int. J. Quantum Chem. 2019, 119, e25861.
- 75H. H. Corzo, H. G. Laguna, R. P. Sagar, J. Math. Chem. 2012, 50, 233.
- 76H. H. Corzo, E. Castano, H. G. Laguna, R. P. Sagar, J. Math. Chem. 2013, 51, 179.
- 77I. Bialynicki-Birula, J. Mycielski, Commun. Math. Phys. 1975, 44, 129.
- 78W. Beckner, Annals Math. 1975, 102, 159.
- 79R. P. Sagar, H. G. Laguna, N. L. Guevara, Int. J. Quantum Chem. 2011, 111, 3497.
- 80S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, P. Wallden, Adv. Opt. Photonics 2020, 12, 1012.
- 81Y. Y. Liao, S. R. Jian, J. R Lee, Eur. Phys. J. D 2019, 73, 47.
10.1140/epjd/e2019-90363-2 Google Scholar