Biosynthesis of silver nanoparticles by fungi
Ana Olívia de Souza
Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, São Paulo, Brazil
Search for more papers by this authorAlexandre Gomes Rodrigues
Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, São Paulo, Brazil
Search for more papers by this authorAna Olívia de Souza
Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, São Paulo, Brazil
Search for more papers by this authorAlexandre Gomes Rodrigues
Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, São Paulo, Brazil
Search for more papers by this authorDr. Vijai Kumar Gupta
Molecular Glycobiotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
Search for more papers by this authorProf. Robert L. Mach
Institute of Chemical Engineering and Technical Biosciences, Vienna University of Technology, Vienna, Austria
Search for more papers by this authorProf. S. Sreenivasaprasad
Department of Life Sciences and Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Bedfordshire, UK
Search for more papers by this authorSummary
Noble metal nanoparticles exhibit physicochemical properties that are not exhibited by either individual molecules or bulk metals. Physicochemical, optoelectronic and electromagnetic properties of nanoparticles are due to their large surface area and energy, spatial confinement and reduced imperfections, whereby size, shape and crystallinity determine their properties.
Presenting important applications, silver nanoparticles have become one of the most commercialized nanomaterials and can be obtained by several chemical, physical or biological methods. However, there is a preference for a biocompatible, non-toxic and eco-friendly method, and scientists began to steer their attention towards microorganisms as a source of biomolecules in nanobiotechnology. Plants, bacteria, algae, yeasts and filamentous fungi have been investigated and applied as a source for such bio-reductant and stabilizer molecules.
Accordingly, this chapter highlights the main aspects related to the intra- and extracellular biosynthesis of silver nanoparticles by fungi with several examples present in the literature. Analytical tools for physicochemical characterization of silver nanoparticles, mechanisms of synthesis, synthesis by marine fungi species as well as antimicrobial activity, cytotoxicity and bottlenecks of biological nanoparticle synthesis are laid out.
References
- Agabekov, V., N. Ivanova, V. Dlugunovich and I. Vostchula. 2012. Optical properties of polyvinyl alcohol films modified with silver nanoparticles. J. Nano. 2012: 1–5.
- Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar and M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum . Colloids Surf. B. Biointerfaces 28: 313–318.
- Ahmad, A., S. Senapati, M.I. Khan, R. Kumar and M. Sastry. 2005. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 1: 47–53.
- Asharani, P.V., Y.L. Wu, Z. Gong and S. Valiyaveettil. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19: 1–8.
- Baker, C., A. Pradhan, L. Pakstis, D.J. Pochan and S.I. Shah. 2005. Synthesis and antibacterial properties of silver nanoparticles. J. Nanosci. Nanotechnol. 5: 244–249.
- Balaji, D.S., S. Basavaraja, R. Deshpande, D.B. Mahesh, B.K. Prabhakar and A. Venkataraman. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B. Biointerfaces 68: 88–92.
- Bansal, V., D. Rautaray, A. Ahmad and M. Sastry. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium Oxysporum . J. Mater. Chem. 14: 3303–3305.
- Baron, S. 1996. Medical Microbiology. 4th ed. Galveston: University of Texas Medical Branch.
- Basavaraja, S., S.D. Balaji, A. Lagashetty, A.H. Rajasab and A. Venkataraman. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum . Mater. Res. Bull. 43: 1164–1170.
- Beier, H.T., C.B. Cowan, I.-H. Chou, J. Pallikal, J.E. Henry, M.E. Benford, J.B. Jackson, T.A. Good and G.L. Coté. 2007. Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells. Plasmonics 3: 55–64.
- Bhainsa, K.C. and S.F. D'Souza. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus . Colloids Surf. B. 47: 160–164.
- Bilberg, K., M.B.R. Hovgaard, F. Besenbacher and E. Baatrup. 2012. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J. Toxicol. 2012: 1–9.
- Binupriya, A.R., M. Sathishkumar, K. Vijayaraghavan and S.I. Yun. 2009. Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J. Hazard Mater. 177: 539–545.
- Binupriya, A.R., M. Sathishkumar and S.I. Yun. 2010. Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind. Eng. Chem. Res. 49: 852–858.
- Birla, S.S., V.V. Tiwari, A.K. Gade, A.P. Ingle, A.P. Yadav and M.K. Rai. 2009. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus . Lett. Appl. Microbiol. 48: 173–179.
- Brause, R., H. Moeltgen and K. Kleinermanns. 2002. Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy. Appl. Phys. B: Laser Opt. 75: 711–716.
-
Brust, M., M. Walker, D. Bethel, D.J. Schiffrin and R. Whyman. 1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 7: 801–802.
10.1039/c39940000801 Google Scholar
- Cao, J., Y. Wang, J. Yu, J. Xia, C. Zhang, D. Yin and U.O. Hafeli. 2004. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J. Magn. Magn. Mater. 277: 165–174.
- Castro-Longoria, E., A.R. Vilchis-Nestor and M. Avalos-Borja. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa . Colloids Surf. B Biointerfaces 83: 42–48.
- Chandran, S.P., M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22: 577–583.
- Chen, J.C., Z.H. Lin and X.X. Ma. 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett. Appl. Microbiol. 37: 105–108.
- Cho, K., J. Park, T. Osaka and S. Park. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51: 956–960.
- Creighton, J.A. and D.G. Eadon. 1991. Ultraviolet–visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87: 3881–3891.
- De Lima, R., A.B. Seabra and N. Durán. 2012. Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. J. Appl. Toxicol. 32: 867–879.
- Dhillon, G.S., S.K. Brar, S. Kaur and M. Verma. 2012. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit. Rev. Biotechnol. 32: 49–73.
- Dibrov, P., J. Dzioba, K.K. Gosink and C.C. Hase. 2002. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae . Antimicrob. Agents Chemother. 46: 2668–2670.
- Dini, L., E. Panzarini, A. Serra, A. Buccolieri and D. Manno. 2011. Synthesis and in vitro cytotoxicity of glycans-capped silver nanoparticles. Nanomater. Nanotechnol. 1: 58–64.
- Dragieva, I., S. Stoeva, P. Stoimenov, E. Pavlikianov and K. Klabunde. 1999. Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostruct. Mater. 12: 267–270.
- Durán, N., P.D. Marcato, G.I.H. De Souza, O.L. Alves and E. Esposito. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3: 203–208.
- Durán, N., P.D. Marcato, O.L. Alves, G.I.H. De Souza and E. Esposito. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 3: 8–14.
- Durán, N., P.D. Marcato, R. De Conti, O.L. Alves, F.T.M. Costa and M. Brocchi. 2010. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J. Braz. Chem. Soc. 21: 949–959.
- Eftink, M.R. and C.A. Ghiron. 1981. Fluorescence quenching studies with proteins. Anal. Biochem. 114: 199–227.
- Evanoff, J.R.D.D. and G. Chumanov. 2005. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhyChem. 6: 1221–1231.
- Fayaz, A.M., K. Balaji, M. Girilal, P.T. Kalaichelvan and R. Venkatesan. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 57: 6246–6252.
- Fayaz, M., K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan and R. Venketesan. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine 6: 103–109.
- Feng, Q.L., J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim and J.O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus . J. Biomed. Mater. Res. 52: 662–668.
- Gade, A.K., A. Ingle, C. Whiteley and M. Rai. 2010. Mycogenic metal nanoparticles: progress and applications. Biotechnol. Lett. 32: 593–600.
- Gade, A.K., P. Bonde, A.P. Ingle, P.D. Marcato, N. Duran and M.K. Rai. 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J. Biobased Mater. Bioenergy 2: 243–247.
- Gogoi, S.K., P. Gopinath, A. Paul, A. Ramesh, S.S. Ghosh and A. Chattopadhyay. 2006. Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir 22: 9322–9328.
- Gole, A., C. Dash, V. Ramakrishnan, S.R. Sainkar, A.B. Mandale, M. Rao and M. Sastry. 2001. Pepsin–gold colloid conjugates: preparation, characterization and enzymatic activity. Langmuir 17: 1674–1679.
- Hamouda, T., A. Myc, B. Donovan, A.Y. Shih, J.D. Reuter and J.R. Jr. Baker. 2001. A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiol. Res. 156: 1–7.
- Hayat, M.A. 1989. Colloidal gold: principles, methods and applications. New York: Academic Press, Inc.
- Henglein, A. 1993. Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles and the atom-to-metal transition. J. Phys. Chem. 97: 5457–5464.
- Hesseltine, C.W., R. Rogers and F.G. Winarno. 1988. Microbiological studies on amylolytic oriental fermentation starters. Mycopathologia 101: 141–155.
- Hovel, H., S. Fritz, A. Hilger, U. Kreibig and M. Vollmer. 1993. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48: 18178–18188.
- Huang, H. and X. Yang. 2004. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339: 2627–2631.
- Ingle, A., A. Gade, S. Pierrat, C. Sönnichsen and R. Mahendra. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr. Nanosci. 4: 141–144.
- Ingle, A., M. Rai, A. Gade and M. Bawaskar. 2009. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J. Nanoparticle Res. 11: 2079–2085.
- Jordan, C.C., I.N. Kaiser and V.C. Moore. 2012. Nanotechnology patent survey: who will be the leaders in the fifth technology revolution? Nanotechnol. Law Business 9: 122–132.
- Kaegi, R., B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller and M. Burkhardt. 2010. Release of silver nanoparticles from outdoor facades. Environ. Pollut. 158: 2900–2905.
- Kamat, P.V. 2002. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106: 7729–7744.
- Kathiresan, K. and M.M. Selvam. 2005. Evaluation of beneficial bacteria from mangrove soil. Bot. Mar. 49: 86–88.
- Kathiresan, K., N.M. Alikunhi, S. Pathmanaban, A. Nabikhan and S. Kandasamy. 2010. Analysis of antimicrobial silver nanoparticles synthesized by coastal strains of Escherichia coli and Aspergillus niger . Can. J. Microbiol. 56: 1050–1059.
- Kathiresan, K., S. Manivannan, M.A. Nabee and B. Dhivya. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf . B Biointerfaces 71: 133–137.
- Kemp, M.M., A. Kumar, S. Mousa, E. Dyskin, M. Yalcin, P. Ajayan, R.J. Linhardt and S.A. Mousa. 2009. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology 20: 1–7.
- Klasen, H.J. 2000a. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26: 117–130.
- Klasen, H.J. 2000b. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26: 131–138.
- Klaus-Joerger, T., R. Joerger, E. Olsson and C.G. Granqvist. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19: 15–20.
- Klueh, U., V. Wagner, S. Kelly, A. Johnson and J.D. Bryers. 2000. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res. 53: 621–631.
- Kong, H. and J. Jang. 2006. One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization. Chem. Commun. (Camb.) 28: 3010–3012.
- Kora, A.J., S.R. Beedu and A. Jayaraman. 2012. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org. Med. Chem. Lett. 2: 17.
- Kumar, C.V. and G.L. McLendon. 1997. Nanoencapsulation of cytochrome C and horseradish peroxidase at the galleries of alpha-zirconium phosphate. Chem. Mater. 9: 863–870.
- Kumar, R., S. Howdle and H. Munstedt. 2005. Polyamide/silver antimicrobials: effect of filler types on the silver ion release. J. Biomed. Mater. Res. 75B: 311–319.
- Kumar, S.A., M.K. Abyaneh., S.W. Gosavi, S.K. Kulkarni, R. Pasricha, A. Ahmad and M.I. Khan. 2007. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3 . Biotechnol. Lett. 29: 439–445.
- Kumar, V.S., B.M. Nagaraja, V. Shashikala, A.H. Padmasri, S.S. Madhavendra, B.D. Raju and K.S.R. Rao. 2004. Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. A: Chem. 223: 313–319.
- Lansdown, A.B.G. 2002. Silver I: its antibacterial properties and mechanism of action. J . Wound Care 11: 125–138.
- Ledwith, D.M., A.M. Whelan and J.M. Kelly. 2007. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem. 17: 2459–2464.
- Leigh, S.Y., M. Som and J.T.C. Liu. 2013. Method for assessing the reliability of molecular diagnostics based on multiplexed SERS-coded nanoparticles. PLOS ONE 8: 1–8.
- Li, Y., X. Duan, Y. Qian, L. Yang and H. Liao. 1999. Nanocrystalline silver particles: synthesis, agglomeration, and sputtering induced by electron beam. J. Colloid Interface Sci. 209: 347–349.
- Liau, S.Y., D.C. Read, W.J. Pugh, J.R. Furr and A.D. Russell. 1997. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279–283.
- Link, S. and M.A. El-Sayed. 1999. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103: 8410–8426.
- Link, S. and M.A. El-Sayed. 2003. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54: 331–366.
- Lok, C.N., C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K. Tam, J.F. Chiu and C.M. Che. 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.
- Lu, H.W., S.H. Liu, X.L. Wang, X.F. Qian, J. Yin and J.K. Jhu. 2003. Silver nanocrystals by hyperbranched polyurethane assisted photochemical reduction of Ag+ . Mater. Chem. Phys. 81: 104–107.
- Luoma, N.S. 2008. Silver nanotechnologies and the environment: old problems or new challenges? Washington, DC: Woodrow Wilson International Center for Scholars.
- Madigan, M. and J. Martinko. 2005. Brock biology of microorganisms. 11th ed. Englewood Cliffs, NJ: Prentice Hall.
-
Mah, C., I. Zolotukhin, T.J. Fraites, J. Dobson, C. Batich and B.J. Byrne. 2000. Microsphere- mediated delivery of recombinant AAV vectors in vitro and in vivo
. Mol. Ther. 1: S239–S239.
10.1006/mthe.2000.0174 Google Scholar
- Maliszewska, I., K. Szewczyk and K. Waszak. 2009. Biological synthesis of silver nanoparticles. J. Phys. Conf. Ser. 146: 1–6.
- Mandal, D., M.E. Bolander, D. Mukhopadhyay, G. Sarkar and P. Mukherjee. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69: 485–492.
- Mann, S. and G.A. Ozin. 1996. Synthesis of inorganic materials with complex form. Nature 382: 313–318.
- Mansoori, G.A. 2010. Synthesis of nanoparticles by fungi. US patent US 2010/0055199 A1. Alexandria: USPTO.
- Merin, D.D., S. Prakash and B.V. Bhimba. 2010. Antibacterial screening of silver nanoparticles synthesized by marine micro algae. Asian Pac. Trop. Med. 3: 797–799.
- Mock, J.J., M. Barbic, D.R. Smith, D.A. Schultz and S.J. Schultz. 2002. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116: 6755–6759.
- Mohammadian, A., S.A. Shojaosadati and M.H. Rezaee. 2007. Fusarium Oxysporum mediates photoregeneration of nanoparticles. Sci. Iran 14: 323–326.
- Morones, J.R., J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346–2353.
- Moteshafi, H., S.M. Mousavi and S.A. Shojaosadati. 2012. The possible mechanisms involved in nanoparticles biosynthesis. J. Ind. Eng. Chem. 18: 2046–2050.
- Moyer, C.A., L. Brentando, D.L. Gravens, H.W Margraf and W.W. Monafo. 1965. Treatment of large human burns with 0.5% silver nitrate solution. Arch. Surg. 90: 812–867.
-
Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry and R. Kumar. 2001a. Bioreduction of AuCl4
-ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 40: 3585–3588.
10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K CAS PubMed Web of Science® Google Scholar
- Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry. 2001b. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix. A novel biological approach to nanoparticle synthesis. Nano Lett. 1: 515–519.
- Mukherjee, P., M. Roy, B.P. Mandal, G.K. Dey, P.K. Mukherjee, J. Ghatak, A.K. Tyagi and S.P. Kale. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum . Nanotechnology 19: 1–7.
-
Mukherjee, P., S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar and M. Sastry. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum
. Chembiochem 3: 461–463.
10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- Musarrat, J., S. Dwivedi, B.R. Singh, A.A. Al-Khedhairy, A. Azam and A. Naqvi. 2010. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101: 8772–8776.
- Nagy, A.J. and G. Mestl. 1999. High temperature partial oxidation reactions over silver catalysts. Appl. Catal. A-Gen. 188: 337–353.
- Narayanan, K.B. and N. Sakthivel. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 156: 1–13.
- Navarro, E., A. Baun, R. Behra, N.B. Hartmann, J. Filser, A.-J. Miao, A. Quigg, P.H. Santschi and L. Sigg. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17: 372–386.
- Nayak, R.R., N. Pradhan, D. Behera, K.M. Pradhan, S. Mishra, L.B. Sukla and B.K. Mishra. 2011. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanopart. Res. 13: 3129–3137.
- Newman, D.K. and R. Kolter. 2000. A role for excreted quinones in extracellular electron transfer. Nature 405: 94–97.
- Nithya, R. and R. Ragunathan. 2009. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct. 4: 623–629.
- Petit, C., P. Lixon and M.P. Pileni. 1993. In situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. 97: 12974–12983.
- Philip, D. 2009. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 73: 374–381.
- Philip, D. 2010. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 75: 1078–1081.
- Pighi, L., T. Pumpel and F. Schinner. 1989. Selective accumulation of silver by fungi. Biotechnol. Lett. 11: 275–280.
- Rai, M., A. Yadav and A. Gade. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76–83.
- Rao, C.N.R., G.U. Kulkarni, P.J. Thomas and P.P. Edwards. 2000. Metal nanoparticles and their assemblies. Chem. Soc. Rev. 29: 27–35.
- Rautaray, D., A. Sanyal, S.D. Adyanthaya, A. Ahmad and M. Sastry. 2004. Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum . Langmuir 20: 6827–6833.
- Raveendran, P., J. Fu and S.L. Wallen. 2003. Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125: 13940–13941.
- Riddin, T.L., M. Gericke and C.G. Whiteley. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. Lycopersici using response surface methodology. Nanotechnology 17: 3482–3489.
- Rodrigues, A.G., L.Y. Ping, P.D. Marcato, O.L. Alves, M.C.P. Silva, R.C. Ruiz, I.S. Melo, L. Tasic and A.O. De Souza. 2013. Biogenic antimicrobial silver nanoparticles produced by fungi. Appl. Microbiol. Biotechnol. 97: 775–782.
- Rogers, J.V., C.V. Parkinson, Y.W. Choi, J.L. Speshock and S.M. Hussain. 2008. A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res. Lett. 3: 129–133.
- Sadowski, Z., I.H. Maliszewska, B. Grochowalska, I. Polowczyk and T. Kozlecki. 2008. Synthesis of silver nanoparticles using microorganisms. Mater. Sci Poland. 26: 419–424.
- Salton, M.R.J. and K.-S Kim. 1996. Structure. In Medical microbiology. 4th ed. Edited by S.I. Baron. Galveston, TX: The University of Texas, Medical Branch at Galveston. pp. 129–145.
- Sanghi, R. and P. Verma. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 100: 501–504.
- Saravanan, M. and A. Nanda. 2010. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf . B Biointerfaces 77: 214–218.
- Sastry, M., A. Ahmad, M.I. Khan and R. Kumar. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr. Sci. 85: 162–170.
- Sathishkumar, M., K. Sneha, S.W. Won, C.W. Cho, S. Kim and Y.S. Yun. 2009. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B. Biointerfaces 73: 332–338.
- Sathishkumar, M., K. Sneha and Y.S. Yun. 2010. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour. Tecnhnol. 101: 7958–7965.
- Sawle, B.D., B. Salimath, R. Deshpande, M.D. Bedre, B.K. Prabhakar and A. Venkataraman. 2008. Biosynthesis and stabilization of Au and Au–Ag alloy nanoparticles by fungus, Fusarium semitectum . Sci. Technol. Adv. Mater. 9: 1–6.
- Schmid, G. 1992. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92: 1709–1727.
- Senapati, S., A. Ahmad, M.I. Khan, M. Sastry and R. Kumar. 2005. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1: 517–520.
- Senapati, S., D. Mandal, A. Ahmad, M.I. Khan, M. Sastry and R. Kumar. 2004. Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J. Phys. 78A: 101–105.
- Shaligram, N.S., M. Bule, R. Bhambure, R.S. Singhal, S.K. Singh, G. Szakac and A. Pandey. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 44: 939–943.
- Shankar, S.S., A. Ahmad and M. Sastry. 2003a. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 19: 1627–1631.
- Shankar, S.S., A. Ahmad, R. Pasricha and M. Sastry. 2003b. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 13: 1822–1826.
- Shankar, S.S., A. Rai, A. Ahmad and M. Sastry. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496–502.
- Sharma, B., R.R. Frontiera, A.-I. Henry, E. Ringe and R.P.V. Duyne. 2012. SERS: materials, applications, and the future. Mater. Today 15: 16–25.
- Sharma, V.K., R.A. Yngard and Y. Lin. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83–96.
- Silver, S., L.T. Phung and G. Silver. 2006. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 33: 627–634.
- Simkiss, K. and K. Wilbur. 1989. Biomineralization: cell biology and mineral deposition. San Diego: Academic Press, Inc. pp. 1129–1130.
- Singh, A.K., M. Talat, D.P. Singh and O.N. Srivastava. 2010. Biosynthesis of gold and silver nanoparticles by natural precursor clove and their functionalization with amine group. J. Nanopart. Res. 12: 1667–1675.
- Sintubin, L., W. De Windt, J. Dick, J. Mast, D. Van der Ha, W. Verstraete and N. Boon. 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 84: 741–749.
- Slawson, R.M., M.I. Van Dyke, H. Lee and J.T. Trevor. 1992. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27: 72–79.
- Sondi, I. and B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275: 177–182.
- Spadaro, J.A., T.J. Berger, S.D. Barranco, S.E. Chapin and R.O. Becker. 1974. Antibacterial effects of silver electrodes with weak direct current. Antimicrob. Agents Chemother. 6: 637–642.
- Sui, Z.M., X. Chen, L.Y. Wang, L.M. Xu, W.C. Zhuang, Y.C. Chai and C.J. Yang. 2006. Capping effect of CTAB on positively charged Ag nanoparticles. Physica E Low Dimens. Syst. Nanostruct. 33: 308–314.
- Sulaiman, G.M., W.H. Mohammed, T.R. Marzoog, A.A. Al-Amiery, A.A. Kadhum, A.B. Mohamad and R. Bagnati. 2013. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 3: 58–63.
- Sun, R.W., R. Chen, N.P. Chung, C.M. Ho, C.L. Lin and C.M. Che. 2005. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem. Commun. (Camb.) 40: 5059–5061.
- Syed, A., S. Saraswati, G.C. Kundu and A. Ahmad. 2013. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines. Spectrochim. Acta A: Mol . Biomol. Spectrosc. 114: 144–147.
- Thakkar, K.N., S.S. Mhatre and R.Y. Parikh. 2010. Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6: 257–262.
- The National Nanotechnology Initiative. Strategic plan. 2007. http://www.nano.gov/nanotech-101/what/definition (accessed 2 September 2014).
- Turkevitch, J., P.C. Stevenson and J. Hillier. 1951. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11: 55–75.
- Uddin, I., S. Adyanthaya, A. Syed, K. Selvaraj, A. Ahmad and P. Poddar. 2008. Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. J. Nanosci. Nanotechnol. 8: 3909–3913.
- Vermeiren, L., F. Devlieghere and J. Debevere. 2002. Effectiveness of some recent antimicrobial packaging concepts. Food Addit. Contam. 19(4 Suppl): 163–171.
- Vigneshwaran, N., A.A. Kathe, P.V. Varadarajan, R.P. Nachane and R.H. Balasubramanya. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. B. Biointerfaces 53: 55–59.
- Vigneshwaran, N., N.M. Ashtaputre, P.V. Varadarajan, R.P. Nachane, K.M. Paralikar and R.H. Balasubramanya. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus . Mater. Lett. 61: 1413–1418.
- Vijayakumar, P.S. and B.L.V. Prasad. 2009. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25: 11741–11747.
- White, R.J. and R. Cooper. 2005. Silver sulphadiazine: a review of the evidence. Wounds UK 1: 51–61.
- Wijnhoven, S.W.P., W.J.G.M. Peijnenburg, C.A. Herberts, W.I. Hagens, A.G. Oomen, E.H.W. Heugens, B. Roszek, J. Bisschops, I. Gösens, D. Van de Meent,. S. Dekkers, W.H. De Jong, M. Van Zijverden, A.J.A.M. Sips and R.E. Geertsma. 2009. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3: 109–138.