Biomedical Applications of Nanomaterials: An Overview
Debasis Bagchi PhD, MACN, CNS, MAIChE
University of Houston College of Pharmacy, Houston, Texas, USA
Search for more papers by this authorManashi Bagchi PhD, FACN
NutriToday LLC, Boston, Massachusetts, USA
Search for more papers by this authorHiroyoshi Moriyama PhD, FACN
Showa Pharmaceutical University, Tokyo, Japan
Search for more papers by this authorFereidoon Shahidi PhD, FACS, FAOCS, FCIC, FCIFST, FIAFoST, FIFT, FRSC
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorFereidoon Shahidi PhD, FACS, FAOCS, FCIC, FCIFST, FIAFoST, FIFT, FRSC
Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
Search for more papers by this authorSummary
Within the short span of a decade, nanotechnology has evolved into a truly interdisciplinary field undergoing rapid expansion, with the promise of new developments in every traditional scientific discipline. At the nanometer scale, the self-ordering forces and properties of materials seem to be different from those at the macroscale. The application of nanotechnology in biomedical fields is one of the major thrust areas that are currently gaining momentum, as all biological systems embody the principles of nanotechnology. The nanoscience tools that are currently well understood and those that will be developed in future are likely to have an enormous impact on biology, biotechnology, and medicine. The comparable size scale of nanomaterials and biological materials, such as antibodies and proteins, facilitates their use in biological and medical applications. The biomedical community has recently discovered that the distinctive physical characteristics of nanomaterials, such as their extraordinarily high surface area to volume ratio, tuneable optical emission, unique electrical and magnetic behavior, and other novel properties can be exploited in a wide spectrum of biomedical utilities ranging from drug delivery to biosensors. Realizing the immense potential of nanomaterials for applications in diverse areas of biology and medicine, we review recent advances in this field and discuss future perspectives.
References
- Feynman RP. There's plenty of room at the bottom. Eng. Sci. (CalTech) 23, 22–36 (1960).
- Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding biomolecules. Nat. Biotechnol. 19, 631–5 (2001).
- Kamat PV. Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 106, 7729–44 (2002).
- Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–108 (2004).
- Pagona G, Tagmatarchis N. Carbon nanotubes: Materials for medicinal chemistry and biotechnological applications. Curr. Med. Chem. 13, 1789–98 (2006).
- Tang XW, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–6 (2006).
- Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–12 (2008).
- Robinson JT, Tabakman SM, Liang Y, Wang H, Sanchez Casalongue H, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–31 (2011).
- Gaffet E, Tachikart M, El Kedim O, Rahouadj R. Nanostructural materials formation by mechanical alloying: Morphologic analysis based on transmission and scanning electron microscopic observations. Mater. Charact. 36, 185–90 (1996).
- Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C. Study of chemical composition of nano-structural materials prepared by laser cutting of metals., Fizika Metallov I Metallovedenie 85, 111–17 (1998).
- Bonnemann H, Braun G, Brijoux W. Nanoscale colloidal metals and alloys stabilized by solvents and surfactants: Preparation and use as catalyst precursors. J. Organometallic Chem. 520, 143–62 (1996).
- Zameer S, Yutaka I, Masahiro S, Hajime K, Yukiya H, Toshirou Y, Takako N, Hironobu KA, Kenji A. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 286, 403–10 (2008).
- Ghosh KK, Kolay S. Preparation of Ag nanoparticles in surfactant solution. J. Dispersion Sci. Technol. 29, 676–81 (2008).
- Brettreich M, Hirsch A. A highly water-soluble dendro[60]fullerene. Tetrahedron Lett. 39, 2731–4 (1998).
- Zeng L, Alemany LB, Edwards CL, Barron AR. Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: Side chain length dependence on the observation of the sidewall sp3 carbons. Nano Res. 1, 72–88 (2008).
- Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8, 4469– 76 (2008).
- Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkiany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–30 (2008).
- Cao YWC, Jin RC, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–40 (2002).
- Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-sized-related properties, and applications towards biology, catalysis and nanotechnology. Chem. Rev. 104, 293–346 (2004).
- Fritzsche W, Taton TA. Metal nanoparticles as labels for heterogeneous, chip-based DNA detection. Nanotechnology 14, R63–R73 (2003).
- Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv. Drug Delivery Rev. 60, 1307–15 (2008).
- Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide modified gold nanoparticles for intracellular gene regulation. Science 312, 1027–30 (2006).
- Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D. Characterization of antiplatelet properties of silver nanoparticles. ACS Nano 3, 1357–64 (2009).
- Shrivastava S, Bera T, Roy A, Singh G, Ramachan-drarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 225103–11 (2007).
- Darouiche RO. Anti-infective efficacy of silver-coated medical prostheses. Clin. Infect Dis. 29, 1371–7 (1999).
- Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ. In-teraction of silver nanoparticles with HIV-1. J. Nanobiotechnol. 3, 6 (2005).
- Huff TB, Tong L, Zhao Y, Hansen MN, Cheng JX, Wei A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2, 125–32 (2007).
- Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63 (2005).
- Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ. Antimicrobial effects of silver nanoparticles. Nano-medicine: NBM 3, 95–101 (2007).
- Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26, 131–8 (2000).
- Li P, Li J, Wu C, Wu Q, Li J. Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16, 1912–17 (2005).
- Li Y, Leung P, Yao L, Song QW, Newton E. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infec. 62, 58–63 (2006).
- Lowery AR, Gobin AM, Day ES, Halas NJ, West JL. Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomed. 1, 149–54 (2006).
- O' Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171 (2004).
- Pissuwan D, Valenzuela SM, Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–7 (2006).
- Rojo J, Diaz V, de la Fuente JM, Segura I, Barrientos AG, Riese HH, Bernad A, Penades S. Gold glyconanoparticles as new tools in antiadhesive therapy. ChemBioChem 5, 291–7 (2004).
- Silver S, Phung LT, Silver G. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Ind. Microbiol. Biotechnol. 33, 627–34 (2006).
- Stevens KNJ, Crespo-Biel O, van den Bosch EEM, Dias AA, Knetsch MLW, Aldenhoff YBJ, van de. Veen FH, Maessen JG, Stobberingh EE, Koole LH. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials 30, 3682–90 (2009).
- Schinazi RF, Sijbesma R, Srdanov G, Hill CL, Wudl F. Synthesis and virucidal activity of a water-soluble, configurationally stable, derivatized C60 fullerene. Antimicrob. Agents Chemother. 37, 1707–10 (1993).
- Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY. Inhibition of Escherichia coli-induced meningitis by carboxyfullerene. Antimicrob. Agents Chemother. 43, 2273–7 (1999).
- Tsao N, Luh TY, Chou CK, Wu JJ, Lin YS, Lei HY. Inhibition of group A Streptococcus infection by carboxyfullerene. Antimicrob. Agents Chemother. 45, 1788–93 (1999).
- Bosi S, Da Ros T, Castellano S, Banti E, Prato M. Antimycobacterial activity of ionic fullerene derivatives. Bioorg. Med. Chem. Lett. 10, 1043–5 (2000).
- Tabata Y, Murakami Y, Ikada Y. Photodynamic effect of polyethylene glycol-modified fullerene on tumor. Jpn. J. Cancer Res. 88, 1108–16 (1997).
- Tabata Y, Murakami Y, Ikada Y. Antitumor effect of poly (ethylene glycol)-modified fullerene. Fullerene Sci. Technol. 5, 989–1007 (1997).
- Miyata N, Yamakoshi T. In: Kadish KM, Ruoff RS, editors. Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials. Pennington, NJ: Electrochemical Society, 345–57 (1997).
- Dugan LL, Lovett E, Cuddihy S, Ma B, Lin T, Choi DW. Carboxyfullerenes as neuroprotective antioxidants. In: Kadish KM, Ruoff RS, editors. Fullerenes: Chemistry, Physics, and Technology. New York: John Wiley&Sons, 467–80 (2000).
- Cai X, Jia H, Liu Z, Hou B, Luo C, Feng Z, Li W, Liu J. Polyhydroxylated fullerene derivative C(60)(OH) (24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+)-induced cellular model of Parkinson's disease. J. Neurosci. Res., 86, 3622–34 (2008).
- Kam NWS, Liu Z, Dai H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–3 (2005).
- Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 68, 6652–60 (2008).
- Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17 (2004).
- Liu Z, Sun X, Nakayama N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–6 (2007).
- Zavaleta C, De La Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–5 (2008).
- Chakravarty P, Marches R, Zimmerman NS, Swafford AD, Bajaj P, Musselman IH, Pantano P, Draper RK, Vitetta ES. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 105, 8697–702 (2008).
- Kam NWS, O' Connell M, Wisdom JA, Dai H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA 102, 11600–5 (2005).
- Liu Z, Tabakman S, Welsher K, Dai H. Carbon nano-tubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009).
- Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 104, 727–32 (2007).
- Chang YR, Lee HY, Chen K, Chang CC, Tsai DS, Fu CC, Lim TS, Tzeng YK, Fang CY, Han CC, et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nat. Nanotechnol. 3, 284–8 (2008).
- Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC. Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. J. Am. Chem. Soc. 127, 17604–5 (2005).
- Kong XL, Huang LC, Hsu CM, Chen WH, Han CC, Chang HC. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 77, 259–65 (2005).
- Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru S, Garrell RL, Torbati S, Freitas SS, Chow GM. Surface-modified diamond nanoparticles as antigen delivery vehicles. Bioconjug. Chem. 6, 507–11 (1995).
- Huang H, Pierstorff E, Osawa E, Ho D. Active nano-diamond hydrogels for chemotherapeutic delivery. Nano Lett. 7, 3305–14 (2007).
- Huang LC, Chang HC. Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20, 5879–84 (2004).
- Liu Y, Yu D, Zeng C, Miao Z, Dai L. Biocompatible graphene oxide-based glucose biosensors. Langmuir 26, 6158–60 (2010).
- Wang Y, Li YM, Tang LH, Lu J, Li JH. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889–92 (2009).
- Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–12 (2008).
- Peng C, Hu W, Zhou Y, Fan C, Huang Q. Intracellular imaging with a graphene-based fluorescent probe. Small 6, 1686–92 (2010).
- Liu Z, Robinson JT, Sun X, Dai H. PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–7 (2008).
- Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. Graphene-based antibacterial paper. ACS Nano 4, 4317–23 (2010).
- Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4, 5731–6 (2010).
- Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–23 (2010).
- Robinson JT, Tabakman SM, Liang Y, Wang H, Casa-longue HS, Vinh D, Dai H. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825– 31 (2011).
- Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L. Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25, 12030– 3 (2009).
- Zrazhevskiy P, Gao X. Multifunctional quantum dots for personalized medicine. Nano Today 4, 414– 28 (2009).
- Xing Y, Xia Z, Rao J. Semiconductor quantum dots for biosensing and in vivo imaging. IEEE Tran. Nanobioscience 8, 4–12 (2009).
- Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004).
- Bentolila LA, Weiss S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys. 45, 59–70 (2006).
- Medintz IL, Mattoussi H. Quantum dot-based resonance energy transfer and its growing application in biology. Phys. Chem. Chem. Phys. 1, 17–45 (2009).
- Medintz IL, Pons T, Trammell SA, Grimes AF, English DS, Blanco-Canosa JB, Dawson PE, Mattoussi H. Interactions between redox complexes and semiconductor quantum dots coupled via a peptide bridge. J. Am. Chem. Soc. 130, 16745–56 (2008).
- Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, Wang D, Hom YK, Hann B, Park JW. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett. 8, 2851–7 (2008).
- Samia ACS, Chen XB, Burda C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125, 15736–7 (2003).
- Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanopart. Res. 8, 489– 96 (2006).
- Majewski P, Thierry B. Functionalized magnetite nanoparticles: Synthesis, properties, and bio-applications. Crit. Rev. Solid State Mat. Sci. 32, 203–15 (2007).
- Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem. Rev. 99, 3181–98 (1999).
- Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–97 (2011).
- Sailaja AK, Amareshwar P, Chakravarty P. Chitosan nanoparticles as a drug delivery system. RJPBCS 1, 474–84 (2010).
- Brandl M. Liposomes as drug carriers: A technological approach. Biotechnol. Annu. Rev. 7, 59–85 (2001).
- Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv. 4, 297–305 (2007).
- Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB. The liposomal formulation of doxorubicin. Methods Enzymol. 391, 71–97 (2005).
- Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 59, 478–90 (2007).
- Tan Y, Dai Y, Li Y, Zhua D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant– potassium bitartrate. J. Mater. Chem. 13, 1069–75 (2003).
- Mallick K, Witcomb MJ, Scurell MS. Polymer stabilized silver nanoparticles: A photochemical synthesis route. J. Mater. Sci. 39, 4459–63 (2003).
- Li Y, Duan X, Qian Y, Li Y, Liao H. Nanocrystalline silver particles: Synthesis, agglomeration, and sputtering induced by electron beam. J. Colloid Interface Sci. 209, 347–9 (1999).
- Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 69, 485–92 (2006).
- Ahmad A, Mukherjee P, Mandal D, Senapati S, Islam Khan M, Kumar R, Sastry M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J. Am. Chem. Soc. 124, 12108–9 (2002).
-
Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem. Biochem. 3, 461–3 (2002).
10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 28, 313–18 (2003).
- Kim YC, Park NC, Shin JS, Lee SR, Lee YJ, Moon DJ. Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3 catalysts. Catal. Today 87, 153–62 (2003).
- Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ. Submicrometer metallic barcodes. Science 294, 137–41 (2001).
- O' Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171 (2004).
- Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol. Res. 108, 1541–9 (2011).
- Singh SK, Shrivastava S, Nayak M, Sinha ASK, Jagannadham MV, Dash D. Stabilization of protein by biocompatible nanoparticles of silver. J. Bionanosci. 3, 88–96 (2009).
- Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96, 13611–14 (1999).
- Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed. Nanotechnol. Biol. Med. 5, 452–6 (2009).
- Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against Gram-positive and Gramnegative bacteria. Nanomed. Nanotechnol. Biol. Med. 6, 103–9 (2010).
- Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–53 (2005).
- Chen LQ, Xiao SJ, Peng L, Wu T, Ling J, et al. Aptamer-based silver nanoparticles used for intracellular protein imaging and single nanoparticle spectral analysis. J. Phys. Chem. B 114, 3655–9 (2010).
- Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM. Topical delivery of silver nanoparticles promotes wound healing. Chem. Med. Chem. 2, 129–36 (2007).
- Alivisatos AP. The use of nanocrystals in biological detection. Nat. Biotechnol. 22, 47–51 (2004).
- Ghadiali JE, Stevens MM. Enzyme-responsive nanoparticle systems. Adv. Mater. 20, 4359–63 (2008).
- Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc. Faraday Soc. 0, 55–75 (1951).
- Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700–7 (2006).
- Giersig M, Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–13 (1993).
-
Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 7, 801–2 (1994).
10.1039/c39940000801 Google Scholar
- Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–908 (2008).
- Pellegrino T, Sperling RA, Alivisatos AP, Parak WJ. Gel electrophoresis of gold-DNA nanoconjugates. J. Biomed. Biotechnol. 2007, 26796–804 (2007).
- Liz-Marzán LM. Nanomaterials: Formation and color. Mater. Today 7, 26–31 (2004).
- El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 34, 257–64 (2001).
- Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–62 (2005).
- Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–20 (2006).
- Stern MJ, Stanfield J, Kabbani W, Hsieh JT, Cadeddu JA. Selective prostate cancer thermal ablation with laser activated gold nanoshells. J. Urol. 179, 748–53 (2008).
- Thanh NT, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem. 74, 1624–8 (2002).
- Zhang CX, Zhang Y, Wang X, Tang ZM, Lu ZH. Hyper-Rayleigh scattering of protein-modified gold nanoparticles. Anal. Biochem. 320, 136–40 (2008).
- Kroto HW, Heath JR, O' Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature 318, 162–3 (1985).
- Iijima S. Helical microtubules of graphitic carbon. Nature 354, 56–8 (1991).
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science 306, 666–9 (2004).
- Eklund PC, Pradhan BK, Kim UJ, et al. Large-scale production of single-walled carbon nanotubes using ultrafast pulses from a free electron laser. Nano Lett. 2, 561–6 (2002).
- Nikolaev P, Bronikowski MJ, Bradley RK, et al. Gas-phase catalytic growth of single walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–7 (1999).
- Park SJ, Ruoff RS. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–24 (2009).
- Brodie BC. Sur le poids atomique du graphite. Ann. Chim. Phys. 59, 466–72 (1860).
-
Staudenmaier L. Verfahren zur Darstellung de. Graphitsäure. Ber. Dtsch. Chem. Ges. 31, 1481–99 (1860).
10.1002/cber.18980310237 Google Scholar
- Hummers WS Jr, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
- Rosca ID, Watari F, Uo M, Akaska T. Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon 43, 3124–31 (2005).
- Zeng L, Alemany LB, Edwards CL, Barron AR. Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: Side chain length dependence on the observation of the sidewall sp3 carbons. Nano Res. 1, 72–88 (2008).
- Gooding JJ, Wibowo R, Liu JQ, Yang WR, Losic D, Orbons S, Mearns FJ, Shapter JG, Hibbert DB. Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125, 9006–7 (2003).
- Guiseppi-Elie A, Lei CH, Baughman RH. Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13, 559–64 (2002).
- Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Edn. 43, 2113–7 (2004).
- Willner I. Biomaterials for sensors, fuel cells, and circuitry. Science 298, 2407–8 (2002).
- Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li YM, Kim W, Utz PJ, Dai HJ. Non-covalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 100, 4984–9 (2003).
- Tang XW, Bansaruntip S, Nakayama N, Yenilmez E, Chang YL, Wang Q. Carbon nanotube DNA sensor and sensing mechanism. Nano Lett. 6, 1632–6 (2006).
- Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y. Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027–36 (2010).
- Tang LH, Wang Y, Li YM, Feng HB, Lu J, Li JH. Preparation, structure and electrochemical properties of graphene modified electrode. Adv. Funct. Mater. 19, 2782 (2009).
- Alwarappan S, Erdem A, Liu C, Li CZ. Probing the electrochemical properties of graphene nanosheets for biosensing applications. J. Phys. Chem. C 113, 8853 (2009).
- Wang Y, Li YM, Tang LH, Lu J, Li JH. Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11, 889 (2009).
- Zhou M, Zhai YM, Dong SJ. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 81, 5603 (2009).
- Liu F, Young CJ, Seo TS. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosensors Bioelectronics 25, 2361–5 (2010).
- Chang H, Tang L, Wang Y, Jiang J, Li J. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341–6 (2010).
- Swathi RS, Sebastiana KL. Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).
- Heller DA, Baik S, Eurell TE, Strano MS. Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv. Mater. 17, 2793–9 (2005).
- Liu Z, Tabakman S, Welsher K, Dai H. Carbon nano-tubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 1, 85–120 (2009).
- Leeuw TK, Reith RM, Simonette RA, Harden ME, Cherukuri P, Tsyboulski DA, Beckingham KM, Weisman RB. Single-walled carbon nanotubes in the intact organism: Near-IR imaging and biocompatibility studies in Drosophila. Nano Lett. 7, 2650–4 (2007).
- Keren S, Zavaleta C, Cheng Z, De La Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 5844–9 (2008).
- Zavaleta C, De La Zerda A, Liu Z, Keren S, Cheng Z, Schipper M, Chen X, Dai H, Gambhir SS. Noninvasive Raman spectroscopy in living mice for evaluation of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–5 (2008).
- Xu MH, Wang LHV. Photoacoustic imaging in bio-medicine. Rev. Sci. Instrum. 77, 041101 (2006).
- De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Ma T-J, Oralkan O, Cheng Z, et al. Photoacoustic molecular imaging in living mice utilizing targeted carbon nanotubes. Nat. Nanotech. 3, 557–62 (2008).
- Singh SK, Singh MK, Nayak MK, Kumari S, Grácio JJA, Dash D. Size distribution analysis and physical/fluorescence characterization of graphene oxide sheets by flow cytometry. Carbon 49, 684–92 (2011).
- Prajapati VK, Awasthi K, Gautam S, Yadav TP, Rai M, Srivastava ON, Sundar S. Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. J. Antimicrob. Chemother. 66, 874–9 (2011).
- Schmidt ME, Blanton SA, Hines MA, Guyot-Sionnest P. Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals. Phys. Rev. B Condens. Matter 53, 12629–32 (1996).
- Peng X, Manna L, Yang W, Wickham J, Scher E, Kadavanich A, Alivisatos AP. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).
- Peng ZA, Peng X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–4 (2001).
- Wilson WL, Szajowski PF, Brus LE. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–4 (1993).
- Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 28, 2013–16 (1998).
- Ekimov AI, Onushchenko AA. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett. 34, 345–9 (1981).
- Service RF. Shortfalls in electron production dim hopes for MEG solar cells. Science 322, 1784 (2008).
- Bowers MJ, McBride JR, Rosenthal SJ. White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127, 15378–9 (2005).
- Ledentsov NN. Quantum dot laser. Semicond. Sci. Technol. 26, 014001 (2011).
- Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–5 (2003).
- Norris DJ, Efros AL, Rosen M, Bawendi MG. Size dependence of exciton fine structure in CdSe quantum dots. Phys. Rev. B Condens. Matter 53, 16347–54 (1996).
- Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–46 (2005).
- Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O' Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–65 (2007).
- Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodispersed CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–15 (1993).
- Yin Y, Xu X, Ge X, Lu Y, Zhang Z. Synthesis and characterization of ZnS colloidal particles via gamma-radiation. Radiat. Phys. Chem. 55, 353–6 (1999).
- Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T. Microwave assisted synthesis of metallic nanostructures in solution. Chem. Eur. J. 11, 440–52 (2005).
- Corkery RW. Langmuir–Blodgett multilayer films. Langmuir 13, 3591–4 (1997).
- Feldmann C, Metzmacher C. Polyol mediated synthesis of nanoscale MS particles (M = Zn, Cd, Hg). Mater. Chem. 11, 2603–6 (2001).
- Lifshitz E, Dag I, Litvin I, Hodes G, Gorer S, Reisfeld R, Zelner M, Minti H. Optical properties of CdSe nanoparicels films prepared by chemical deposition and sol-gel methods. Science 288, 188–96 (1998).
- Liu YF, Yu JS. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots: The effect of ligands. J. Colloid Interface Sci. 333, 690–8 (2009).
- Dabbousi B, Rodriguez-Viejo J, Mikulec F, Heine J, Mattoussi H, Ober R, et al. (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. 101, 9463–75 (1997).
- Kang EC, Kataoka OK, Nagasaki Y. Preparation of water-soluble PEGylated semiconductor nanocrystals. Chem. Lett. 33, 840–1 (2004).
- Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M. Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22, 2304–10 (2006).
- Wu XY, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor QDs. Nat. Biotechnol. 21, 41–6 (2003).
- Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–18 (1998).
- Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ. Labelling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol. Ther. 14, 192–201 (2006).
- Koshman YE, Waters SB, Walker LA, Los T, d. Tombe P, Goldspink PH, Russell B. Delivery and visualization of proteins conjugated to quantum dots in cardiac myocytes. J. Mol. Cell Cardiol. 45, 853–6 (2008).
- Wilson WL, Szajowski PF, Brus LE. Quantum confinement in size-selected, surface-oxidized silicon nanocrystals. Science 262, 1242–4 (1993).
- Xing Y, Chaudry Q, Shen C, Kong KY, Zhau HE, Chung LW, Petros JA, O' Regan RM, Yezhelyev MV, Simons JW, Wang MD, Nie S. Bioconjugate. quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc. 2, 1152–65 (2007).
- Shen J, Xu F, Jiang H, Wang Z, Tong J, Guo P, Ding S. Characterization and application of quantum dot nanocrystal monoclonal antibody conjugates for the determination of sulfamethazine in milk by fluoroimmunoassay. Anal. Bioanal. Chem. 389, 2243–50 (2007).
- Wu Y, Campos SK, Lopez GP, Ozbun MA, Sklar LA, Buranda T. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Anal. Biochem. 364, 180–92 (2007).
- Zahavy E, Freeman E, Lustig S, Keysary A, Yitzhaki S. Double labeling and simultaneous detection of B-and T cells using fluorescent nano-crystal (q-dots) in paraffin-embedded tissues. J. Fluoresc. 15, 661–5 (2005).
- Bostick RM, Kong KY, Ahearn TU, Chaudry Q, Cohen V, Wang MD. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 3313–6 (2006).
- Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod. Pathol. 19, 1181–91 (2006).
- Sweeney E, Ward TH, Gray N, Womack C, Jayson G, Hughes A, Dive C, Byers R. Quantitative multiplexed quantum dot immunohistochemistry. Biochem. Biophys. Res. Commun. 374, 181–6 (2008).
- Schwock J, Ho JC, Luther E, Hedley DW, Geddie WR. Measurement of signaling pathway activities in solid tumor fine-needle biopsies by slide-based cytometry. Diagn. Mol. Pathol. 16, 130–40 (2007).
- Pathak S, Choi SK, Arnheim N, Thompson ME. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123, 4103– 4 (2001).
- Xiao Y, Barker PE. Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32, e28 (2004).
- Bentolila LA, Weiss S. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot-DNA conjugates. Cell Biochem. Biophys. 45, 59–70 (2006).
- Ma L, Wu SM, Huang J, Ding Y, Pang DW, Li L. Fluorescence in situ hybridization (FISH) on maize metaphase chromosomes with quantum dot-labeled DNA conjugates. Chromosoma 117, 181–7 (2008).
- Wu SM, Zhao X, Zhang ZL, Xie HY, Tian ZQ, Peng J, Lu ZX, Pang DW, Xie ZX. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization. (FISH) in the microorganism Escherichia coli. ChemPhysChem 7, 1062–7 (2006).
- Matsuno A, Itoh J, Takekoshi S, Nagashima T, Osamura RY. Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J. Histochem. Cytochem. 53, 833–8 (2005).
- Chan P, Yuen T, Ruf F, Gonzalez-Maeso J, Sealfon SC. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33, e161 (2005).
- Tholouli E, Hoyland JA, Di Vizio D, O' Connell F, Macdermott SA, Twomey D, Levenson R, Yin JA, Golub TR, Loda M, Byers R. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem. Biophys. Res. Commun. 348, 628–36 (2006).
- Choi Y, Kim HP, Hong SM, Ryu JY, Han SJ, Song R. In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. Small 5, 2085–91 (2009).
- Farkas DL, Du C, Fisher GW, Lau C, Niu W, Wachman ES, Levenson RM. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph. 22, 89–102 (1998).
- Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–76 (2004).
- Lidke DS, Nagy P, Heintzmann R, Arndt-Jovin DJ, Post JN, Grecco HE, Jares-Erijman EA, Jovin TM. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 22, 198–203 (2004).
- Chen J, Pei Y, Chen Z, Cai J. Quantum dot labeling based on near-field optical imaging of CD44 molecules. Micron 41, 198–202 (2010).
- Gonda K, Watanabe TM, Ohuchi N, Higuchi H. In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J. Biol. Chem. 285, 2750–7 (2009).
- Rieger S, Kulkarni RP, Darcy D, Fraser SE, Koster RW. Quantum dots are powerful multipurpose vital labelling agents in zebrafish embryos. Dev. Dyn. 234, 670–81 (2005).
- Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat. Med. 10, 993–8 (2004).
- Slotkin JR, Chakrabarti L, Dai HN, Carney RS, Hirata T, Bregman BS, Gallicano GI, Corbin JG, Haydar TF. In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev. Dyn. 236, 3393–401 (2007).
- Kobayashi H, Hama Y, Koyama Y, Barrett T, Regino CA, Urano Y, Choyke PL. Simultaneous multicolor imaging of five different lymphatic basins using quantum dots. Nano Lett. 7, 1711–6 (2007).
- Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, Parker JA, Mihaljevic T, Laurence RG, Dor DM, Cohn LH, Bawendi MG, Frangioni JV. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–7 (2004).
- Soltesz EG, Kim S, Laurence RG, DeGrand AM, Parungo CP, Dor DM, Cohn LH, Bawendi MG, Frangioni JV, Mihaljevic T. Intraoperative sentinel lymph node mapping of the lung using nearinfrared fluorescent quantum dots. Ann. Thorac. Surg. 79, 269–77 (2005).
- So MK, Xu C, Loening AM, Gambhir SS, Rao J. Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24, 339–43 (2006).
- Zhang CY, Yeh HC, Kuroki MT, Wang TH. Single-quantum-dot-based DNA nanosensor. Nat. Mater. 4, 826–31 (2005).
- Yao H, Zhang Y, Xiao F, Xia ZY, Rao J. Quantum dot/bioluminescence resonance energy transfer based highly sensitive detection of proteases. Angew. Chem. Int. Ed. 46, 4346–9 (2007).
- Swain MD, Octain J, Benson DE. Unimolecular, soluble semiconductor nanoparticle-based biosensors for thrombin using charge/electron transfer. Bioconjug. Chem. 19, 2520–6 (2008).
- Jie G, Zhang J, Wang D, Cheng C, Chen HY, Zhu JJ. Electrochemiluminescence immunosensor based on CdSe nanocomposites. Anal. Chem. 80, 4033–9 (2008).
- Jiang H, Ju H. Enzyme–quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates. Chem. Commun. 4, 404–6 (2007).
- Zhang CY, Johnson LW. Single quantum-dot-based aptameric nanosensor for cocaine. Anal. Chem. 81, 3051–5 (2009).
- Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V. Photosensitized breakage and damage of DNA by CdSe–ZnS quantum dots. J. Phys. Chem. B 112, 10005–11 (2008).
- Juzenas P, Generalov R, Asta J, Juzeniene A, Moan J. Generation of nitrogen oxide and oxygen radicals by quantum dots. J. Biomed. Nanotechnol. 4, 450–6 (2008).
- Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, Farokhzad OC. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 7, 3065–70 (2007).
- Kakurai M, Demitsu T, Umemoto N, Ohtsuki M, Nakagawa H. Activation of mast cells by silver particles in a patient with localized argyria due to implantation of acupuncture needles. Br. J. Dermatol. 148, 822 (2003).
- Chaby G, Viseux V, Poulain JF, De Cagny B, Denoeux JP, Lok C. Topical silver sulfadiazine-induced acute renal failure. Ann. Dermatol. Venereol. 132, 891–3 (2005).
- Trop M. Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J. Trauma 61, 1024 (2006).
- Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, et al. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 20, 567–74 (2008).
- Asharani PV, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19, 1–8 (2008).
- Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130–9 (2008).
- AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279–90 (2009).
- Stensberg MC, Wei Q, McLamore E, Porterfield DM, Wei A, Sepúlveda MS. Toxicological studies on silver nanoparticles: Challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond.) 6, 879–98 (2011).
- Chithrani BD, Ghazan AA, Chan CW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–8 (2006).
- Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK. Cell selective response to gold nanoparticles. Nanomedicine 3, 111–19 (2007).
- Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small 3, 1941–9 (2007).
- Wang S, Lu W, Tovmachenko O, Rai US, Yu H, Ray PC. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chem. Phys. Lett. 463, 145–9 (2008).
- Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–7 (2005).
- Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21, 10644–54 (2005).
- Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 15, 897–900 (2004).
- Alkilany AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res., 12, 2313–33 (2010).
- Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 6, 1121–5 (2006).
- Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 39, 1378–83 (2005).
- Markovic Z, Trajkovic V. Biomedical potential of the reactive oxygen species generation and quenching by fullerenes (C60). Biomaterials 29, 3561–73 (2008).
- Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am. J. Respir. Cell Mol. Biol. 38, 579 (2008).
- Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol. Appl. Pharmacol. 207, 221 (2005).
- Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 146, 882–93 (2005).
- Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT. Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett. 5, 1676 (2005).
- Nerl HC, Cheng C, Goode AE, Bergin SD, Lich B, Gass M, Porter AE. Imaging methods for determining uptake and toxicity of carbon nanotubes in vitro and in vivo. Nanomedicine (Lond.) 6, 849–65 (2011).
- Bihari P, Holzer M, Praetner M, Fent J, Lerchen-berger M, Reichel CA, Rehberg M, Lakatos S, Krombach F. Single-walled carbon nanotubes activate platelets and accelerate thrombus formation in the microcirculation. Toxicology 269, 148 (2010).
- Semberova J, Lacerda SHDP, Simakova O, Holada K, Gelderman MP, Simak J. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 9, 3312 (2009).
- Saller F, Schapira M, Angelillo-Scherrer A. Role of platelet signaling in thrombus stabilization: Potential therapeutic implications. Curr. Signal Transduct. Ther. 3, 22–54 (2008).
- Badruddin A, Gorelick PB. Antiplatelet therapy for prevention of recurrent stroke. Curr. Treat. Options Neurol. 11, 452–9 (2009).
- Talavera YA, Hernandez IM, Portilla CV. Platelet activation: Basic aspects, its role in cerebrovascular disease and its therapeutic projections. Revista Ecuatoriana Neurologia 16, 127 (2007).
- Chang Y, Yanga ST, Liua JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200, 201 (2011).
- Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, Biris AS. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochro-mocytoma-derived PC12 cells. ACS Nano 4, 3181 (2010).
- Agarwal S, Zhou X, Ye F, He Q, Chen GCK, Soo J, Beoy F, Zhang H, Chen P. Interfacing live cells with nanocarbon substrates. Langmuir 26, 2244 (2010).
- Wang K, Ruan J, Song H, Zhang J, Wo Y, Guo S, Cui D. Biocompatibility of graphene oxide. Nanoscale Res. Lett 6, 8 (2011).
- Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized grapheme. Nanoscale 3, 2461–4 (2011).
- Singh SK, Singh MK, Nayak MK, Kumari S, Shrivastava S, Gracio JA, Dash D. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 5, 4987–96 (2011).
- Bertin G, Averbeck D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88, 1549–59 (2006).
- Taylor A. Biochemistry of tellurium. Biol. Trace Elem. Res. 55, 231–9 (1996).
- Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G. Adverse health effects of selenium in humans. Rev. Environ. Health 16, 233–51 (2001).
- Dubertret B, Skourides P, Norris D, Noireaux V, Brivanlou A, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759–62 (2002).
- Noh YW, Lim YT, Chung BH. Noninvasive imaging of dendritic cell migration into lymph nodes using near-infrared fluorescent semiconductor nanocrystals. FASEB J. 22, 3908–18 (2008).
- Ohyabu Y, Kaul Z, Yoshioka T, Inoue K, Sakai S, Mishima H, Uemura T, Kaul SC, Wadhwa R. Stable and non-disruptive in vitro/in vivo labeling of mesenchymal stem cells by internalizing quantum dots. Hum. Gene Ther. 20, 217–24 (2009).
- Akerman M, Chan W, Laakkonen P, Bhatia S, Ruoslahti E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 99, 12617–21 (2002).
- Lee HM, Shin DM, Song HM, Yuk JM, Lee ZW, Lee SH, Hwang SM, Kim JM, Lee CS, Jo EK. Nanoparticles up-regulate tumor necrosis factor-alpha and CXCL8 via reactive oxygen species and mitogenactivated protein kinase activation. Toxicol. Appl. Pharmacol. 238, 160–9 (2009).
- Stern ST, Zolnik BS, McLeland CB, Clogston J, Zheng J, McNeil SE. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials? Toxicol. Sci. 106, 140–52 (2008).
- Derfus A, Chan W, Bhatia S. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004).
- Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett. 4, 2163–9 (2004).
- Lovric J, Bazzi H, Cuie Y, Fortin G, Winnik F, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J. Mol. Med. 83, 377–85 (2005).
- Warner JH, Hoshino A, Yamamoto K, Tilley RD. Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. Engl. 44, 4550–4 (2005).
- Botsoa J, Lysenko V, Géloën A, Marty O, Bluet J, Guillot G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 92, 173902–3 (2008).
- Qian J, Yong KT, Roy I, Ohulchanskyy TY, Bergey EJ, Lee HH, Tramposch KM, He S, Maitra A, Prasad PN. Imaging pancreatic cancer using surface-functionalized quantum dots. J. Phys. Chem. B 111, 6969–72 (2007).
- Mahler B, Spinicelli P, Buil S, Quelin X, Hermier JP, Dubertret B. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–64 (2008).
- Shi Y, He P, Zhu X. Photoluminescence-enhanced biocompatible quantum dots by phospholipid functionalization. Mater. Res. Bull. 43, 2626–35 (2008).