Physical Vapor Transport Growth and Properties of SiC Monocrystals of 4H Polytype
G. Augustine
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorMcD. Hobgood
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorV. Balakrishna
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorG. Dunne
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorR. H. Hopkins
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorG. Augustine
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorMcD. Hobgood
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorV. Balakrishna
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorG. Dunne
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorR. H. Hopkins
Northrop Grumman Corporation, Electronic Sensors & Systems Division, Science and Technology Center, 1350 Beulah Road, Pittsburgh, PA 15235-5080, USA
Search for more papers by this authorAbstract
The physical vapor transport technique can be employed to fabricate large diameter silicon carbide crystals (up to 50 mm diameter) exhibiting uniform 4H-polytype over the full crystal volume. Crystal growth rate is controlled to first order by temperature conditions and ambient pressure. 4H-polytype uniformity is controlled by polarity of the seed crystal and the growth temperature. 4H-SiC crystals exhibit crystalline defects mainly in the form of dislocations with densities in the 104 cm—2 range and micropipe defects, the latter having densities as low as 10 cm—2 in best crystals. Electrical conductivity in 4H-SiC bulk crystals ranges from <10—2 Ω cm, n-type, to insulating (>1015 Ω cm) at room temperature.
References
- 1 J. A. Lely, Berichte Deutche Keramik Geselshaft 32, 229 (1955).
- 2 D. L. Barrett, J. Electrochem. Soc. 113, 1215 (1966).
- 3 C. Goldberg and J. W. Ostroski, in: Silicon Carbide: A High Temperature Semiconductor, Eds. J. R. O'Connor and J. Smiltens, Pergamon Press, Oxford 1960 (p. 453).
- 4 H. C. Chang, C. Z. LeMay, and L. F. Wallace, Silicon Carbide: A High Temperature Semiconductor (p. 496).
- 5 Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth 43, 209 (1978).
- 6 G. Ziegler, P. Lanig, D. Theis, and C. Weyrich, IEEE Trans. Electron Devices 30, 277 (1983).
- 7
D. L. Barrett,
R. G. Seidensticker,
W. Gaida,
R. H. Hopkins, and
W. J. Choyke,
Springer Proc. Phys.
56, 33
(1990).
10.1007/978-3-642-84402-7_5 Google Scholar
- 8 H. McD. Hobgood, D. L. Barrett, J. P. McHugh, R. C. Clarke, S. Sriram, A. A. Burk, J. Greggi, C. D. Brandt, R. H. Hopkins, and W. J. Choyke, J. Cryst. Growth 137, 181 (1994).
- 9
S. Nishino,
Y. Kojima, and
J. Saraie,
Springer Proc. Phys.
56, 15
(1990).
10.1007/978-3-642-84402-7_2 Google Scholar
- 10 D. L. Barrett, J. P. McHugh, H. McD. Hobgood, R. H. Hopkins, P. G. McMullin, R. C. Clarke, and W. J. Choyke, J. Cryst. Growth 128, 358 (1993).
- 11 Y. M. Tairov, Technical Digest Internat. Conf. Silicon Carbide and Related Materials, Kyoto (Japan), 1995 (p. 11).
- 12 A. A. Burk, Jr. and L. B. Rowland, J. Cryst. Growth 167, 586 (1996).
- 13 S. Sriram, G. Augustine, A. A. Burk, Jr., R. C. Glass, H. McD. Hobgood, P. A. Orphanos, L. B. Rowland, T. J. Smith, C. D. Brandt, M. C. Driver, and R. H. Hopkins, IEEE Electron Device Lett. 17, 369 (1996).
- 14 R. C. Clarke, R. R. Siergiej, A. K. Agarwal, C. D. Brandt, A. A. Burk, Jr., A. Morse, and P. A. Orphanos, Proc. IEEE/Cornell Conf. Advanced Concepts in High Speed Semiconductor Devices and Circuits, Ithaca (New York) 1995 (p. 47).
- 15 J. W. Palmour, S. T. Allen, R. Singh, L. A. Lipkin, and D. G. Waltz, see [11] (p. 813).
- 16 A. K. Agarwal, G. Augustine, V. Balakrishna, C. D. Brandt, A. A. Burk, Li-Shu Chen, R. C. Clarke, P. M. Esker, H. M. Hobgood, R. H. Hopkins, A. W. Morse, L. B. Rowland, S. Seshadri, R. R. Siergiej, T. J. Smith, Jr., and S. Sriram, IEDM Technical Digest, San Francisco, 9.1.1 (1996).
- 17 W. Qian, M. Skowronski, G. Augustine, R. C. Glass, H. McD. Hobgood, and R. H. Hopkins, J. Electrochem. Soc. 142, 4290 (1995).
- 18 E. Biedermann, Solid State Commun. 3, 343 (1965).
- 19 E. Kaldis and N. Piechotka, in: Handbook Crystal Growth, Ed. D. T. J. Hurle, North-Holland, Publ. Co., Amsterdam, 1994 (p. 615).
- 20 M. Kanaya, J. Takhashi, Y. Fujiwara, and A. Moritani, Appl. Phys. Lett 58, 56 (1991).
- 21 R. Stein and P. Lanig, J. Cryst. Growth 131, 71 (1993).
- 22 V. D. Heydemann, N. Schulze, D. L. Barrett, and G. Pensl, Appl. Phys. Lett. 69, 3728 (1996).
- 23 E. N. Mokhov, A. D. Roenkov, Y. A. Vodakov, G. V. Saparin, and S. K. Obyden, Techncial Digest Internat. Conf. Silicon Carbide and Related Materials, Kyoto (Japan), 1996 (p. 245).
- 24 P. G. Neudeck and J. A. Powell, IEEE Electron Device Lett. 15, 63 (1994).
- 25 F. C. Frank, Acta Cryst. 4, 497 (1951).
- 26 J. Giocondi, G. S. Rohrer, M. Skowronski, V. Balakrishna, G. Augustine, H. McD. Hobgood, and R. H. Hopkins, J. Cryst. Growth, accepted for publication.
- 27 S. Wang and M. Dudley, MRS Symp. Proc. 307, 249 (1993).
- 28 K. Koga, Y. Fujikawa, Y. Ueda, and T. Yamaguchi, Springer Proc. Phys. 71, 96 (1992).
- 29 J. Yang, in: PhD Thesis, SiC: Problems in Crystal Growth and Polytypic Transformation, Case Western Reserve University, Cleveland (Ohio) 1993.
- 30 J. W. Mitchell, J. Appl. Phys. 33, 406 (1962).
- 31 J. Schneider, H. D. Muller, K. Maier, and F. Fuchs, Appl. Phys. Lett. 56, 1184 (1990).
- 32 H. McD. Hobgood, R. C. Glass, G. Augustine, R. H. Hopkins, J. Jenny, M. Skowronski, W. C. Mitchel, and M. Roth, Appl. Phys. Lett. 66, 1364 (1995).
- 33 J. R. Jenny, M. Skowronski, W. C. Mitchel, H. McD. Hobgood, R. C. Glass, G. Augustine, and R. H. Hopkins, Appl. Phys. Lett. 68, 1963 (1996).