Analysis of Lipids: Triacylglycerols, Phospholipids, Fatty Acids, and Others
William C. Byrdwell
Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
Search for more papers by this authorWilliam C. Byrdwell
Food Composition and Methods Development Lab, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD, USA
Search for more papers by this authorAbstract
Lipids comprise large and disparate classes of molecules having very different overall polarities, but the one characteristic they typically have in common is a nonpolar hydrocarbon chain that is hydrophobic in nature. The characteristics of each class of lipid dictate the most appropriate tool and approach for analysis. Since many PLs are inherently charged, the polar head group makes them ideally amenable to soft ionization by electrospray ionization (ESI) coupled to MS. In contrast, triacylglycerols (TAGs) are large neutral molecules that are not easily directly ionized by electrospray ionization mass spectrometry (ESI-MS), and formation of adducts is necessary. Atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) both readily ionize neutral molecules such as TAGs and sterols. This article will outline the characteristics of each class of lipid, and how these affect the choice for the most appropriate tool for their analysis, including special steps and considerations to be taken into account to optimize analysis of each class. Emphasis will be given to neutral lipids (i.e. TAGs), which are the major components of many edible lipid mixtures. The article will also focus on the approaches necessary to derive the desired structural information from lipids. Many of the principles fundamental to lipid analysis in foods and edible oils were developed for analysis of biological samples, but are directly applicable to fats and oils. This article is intended to serve as a guide for decision-making, by discussing the strengths and weaknesses and the benefits and shortcomings of the available options for detailed lipid analysis.
References
- 1 Merriam-Webster, Lipid. https://www.merriam-webster.com/dictionary/lipid (accessed 23 January 2018).
- 2 Javanshad, R. and Venter, A.R. (2017). Anal. Methods 9 (34): 4896–4907. doi: 10.1039/c7ay00948h.
- 3 Awad, H., Khamis, M.M., and El-Aneed, A. (2015). Appl. Spectrosc. Rev. 50 (2): 158–175. doi: 10.1080/05704928.2014.954046.
- 4 Clendinen, C.S., Monge, M.E., and Fernández, F.M. (2017). Analyst 142 (17): 3101–3117. doi: 10.1039/c7an00700k.
- 5 Cao, G., Ruan, D., Chen, Z. et al. (2017). TrAC Trends Anal. Chem. 96: 201–211. doi: 10.1016/j.trac.2017.07.015.
- 6 Himmelsbach, M. (2012). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 883–884: 3–17. doi: 10.1016/j.jchromb.2011.11.038.
- 7 Hardman, M. and Makarov, A.A. (2003). Anal. Chem. 75 (7): 1699–1705. doi: 10.1021/ac0258047.
- 8 Stoll, D.R. (2017). In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques (ed. M. Holčapek and W.C. Byrdwell), 250–350. Champaign, IL: Elsevier/AOCS Press.
- 9 Stoll, D.R. and Carr, P.W. (2017). Anal. Chem. 89 (1): 519–531. doi: 10.1021/acs.analchem.6b03506.
- 10 Stoll, D.R. (2015). Bioanalysis 7 (24): 3125–3142. doi: 10.4155/bio.15.223.
- 11 Cacciola, F., Donato, P., Mondello, L., and Dugo, P. (2017). In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques (ed. M. Holčapek and W.C. Byrdwell), 350–450. Champaign, IL: Elsevier/AOCS Press.
- 12 Tranchida, P.Q., Dugo, P., Dugo, G., and Mondello, L. (2004). J. Chromatogr. A 1054 (1–2): 3–16. doi: 10.1016/j.chroma.2004.07.095.
- 13 Tranchida, P.Q., Donato, P., Cacciola, F. et al. (2013). TrAC Trends Anal. Chem. 52: 186–205. doi: 10.1016/j.trac.2013.07.008.
- 14 Tranchida, P.Q., Purcaro, G., Maimone, M., and Mondello, L. (2016). J. Sep. Sci. 39 (1): 149–161. doi: 10.1002/jssc.201500379.
- 15 Cacciola, F., Dugo, P., and Mondello, L. (2017). TrAC Trends Anal. Chem. 96: 116–123. doi: 10.1016/j.trac.2017.06.009.
- 16 Dugo, P., Cacciola, F., Kumm, T. et al. (2008). J. Chromatogr. A 1184 (1–2): 353–368. doi: 10.1016/j.chroma.2007.06.074.
- 17 Donato, P., Cacciola, F., Tranchida, P.Q. et al. (2012). Mass Spectrom. Rev. 31 (5): 523–559. doi: 10.1002/mas.20353.
- 18 Purcaro, G., Tranchida, P.Q., and Mondello, L. (2017). In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques (ed. M. Holčapek and W.C. Byrdwell), 407–444. Champaign, IL: Elsevier/AOCS Press.
- 19 Marriott, P. and Shellie, R. (2002). TrAC Trends Anal. Chem. 21 (9–10): 573–583. doi: 10.1016/S0165-9936(02)00814-2.
- 20 Morris, L.J. (1966). J. Lipid Res. 7 (6): 717–732.
- 21 Marěs, P. (1988). Prog. Lipid Res. 27 (2): 107–133. doi: 10.1016/0163-7827(88)90007-0.
- 22 Ruiz-Gutiérrez, V. and Barron, L.J.R. (1995). J. Chromatogr. B Biomed. Sci. Appl. 671 (1–2): 133–168. doi: 10.1016/0378-4347(95)00093-X.
- 23 Andrikopoulos, N.K. (2002). Crit. Rev. Food Sci. Nutr. 42 (5): 473–505. doi: 10.1080/20024091054229.
- 24 Andrikopoulos, N.K., Chiou, A., and Mylona, A. (2004). Food Rev. Int. 20 (4): 389–405. doi: 10.1081/LFRI-200033470.
- 25 Buchgraber, M., Ulberth, F., Emons, H., and Anklam, E. (2004). Eur. J. Lipid Sci. Technol. 106 (9): 621–648. doi: 10.1002/ejlt.200400986.
- 26 Řezanka, T. and Sigler, K. (2007). Curr. Anal. Chem. 3 (4): 252–271. doi: 10.2174/157341107782109644.
- 27 Hellmuth, C., Uhl, O., Segura-Moreno, M. et al. (2011). J. Sep. Sci. 34 (24): 3470–3483. doi: 10.1002/jssc.201100556.
- 28 Indelicato, S., Bongiorno, D., Pitonzo, R. et al. (2017). J. Chromatogr. A 1515: 1–16. doi: 10.1016/j.chroma.2017.08.002.
- 29 Ivanova, P.T., Milne, S.B., Byrne, M.O. et al. (2007). In: Methods in Enzymology (ed. H.A. Brown), 21–57.
- 30 Guo, X. and Lankmayr, E. (2010). Bioanalysis 2 (6): 1109–1123. doi: 10.4155/bio.10.52.
- 31 Brouwers, J.F. (2011). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811 (11): 763–775. doi: 10.1016/j.bbalip.2011.08.001.
- 32 Shantha, N.C. and Napolitano, G.E. (1992). J. Chromatogr. A 624 (1–2): 37–51. doi: 10.1016/0021-9673(92)85673-H.
- 33 Eder, K. (1995). J. Chromatogr. B Biomed. Sci. Appl. 671 (1–2): 113–131. doi: 10.1016/0378-4347(95)00142-6.
- 34 Brondz, I. (2002). Anal. Chim. Acta 465 (1–2): 1–37. doi: 10.1016/S0003-2670(01)01467-2.
- 35 Ruiz-Rodriguez, A., Reglero, G., and Ibañez, E. (2010). J. Pharm. Biomed. Anal. 51 (2): 305–326. doi: 10.1016/j.jpba.2009.05.012.
- 36 Wu, Z., Zhang, Q., Li, N. et al. (2017). J. Sep. Sci. 40 (1): 288–298. doi: 10.1002/jssc.201600707.
- 37 Murphy, R.C., Fiedler, J., and Hevko, J. (2001). Chem. Rev. 101 (2): 479–526. doi: 10.1021/cr9900883.
- 38 Kuksis, A. (1984). Lab. Res. Methods Biol. Med. 10: 77–131.
- 39 Rohwedder, W.K. (1985). Prog. Lipid Res. 24 (1): 1–18. doi: 10.1016/0163-7827(85)90006-2.
- 40 Kuksis, A. and Myher, J.J. (1986). J. Chromatogr. B: Biomed. Sci. Appl. 379 (C): 57–90. doi: 10.1016/S0378-4347(00)80682-9.
- 41 Kim, H.Y. and Salem, N. Jr. (1993). Prog. Lipid Res. 32 (3): 221–245. doi: 10.1016/0163-7827(93)90008-K.
- 42 Beylot, M. (1994). Proc. Nutr. Soc. 53 (2): 355–362.
- 43 Myher, J.J. and Kuksis, A. (1995). J. Chromatogr. B Biomed. Sci. Appl. 671 (1–2): 3–33. doi: 10.1016/0378-4347(95)00178-L.
- 44 Byrdwell, W.C. (2001). Lipids 36 (4): 327–346. doi: 10.1007/s11745-001-0725-5.
- 45 Welti, R. and Wang, X. (2003). Int. News Fats Oils Relat. Mater. 14 (10): 607–608.
- 46 Welti, R. and Wang, X. (2004). Curr. Opin. Plant Biol. 7 (3): 337–344. doi: 10.1016/j.pbi.2004.03.011.
- 47 Han, X. and Gross, R.W. (2005). Expert Rev. Proteomics 2 (2): 253–264. doi: 10.1586/14789450.2.2.253.
- 48 Wenk, M.R. (2005). Nat. Rev. Drug Discov. 4 (7): 594–610. doi: 10.1038/nrd1776.
- 49 Isaac, G., Jeannotte, R., Esch, S.W., and Welti, R. (2007). Genet. Eng. (N.Y.) 28: 129–157.
- 50 Wolf, C. and Quinn, P.J. (2008). Prog. Lipid Res. 47 (1): 15–36. doi: 10.1016/j.plipres.2007.09.001.
- 51 Zehethofer, N. and Pinto, D.M. (2008). Anal. Chim. Acta 627 (1): 62–70. doi: 10.1016/j.aca.2008.06.045.
- 52 Ivanova, P.T., Milne, S.B., Myers, D.S., and Brown, H.A. (2009). Curr. Opin. Chem. Biol. 13 (5–6): 526–531. doi: 10.1016/j.cbpa.2009.08.011.
- 53 Jung, H.R., Sylvänne, T., Koistinen, K.M. et al. (2011). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811 (11): 925–934. doi: 10.1016/j.bbalip.2011.06.025.
- 54 Li, M., Zhou, Z., Nie, H. et al. (2011). Anal. Bioanal. Chem. 399 (1): 243–249. doi: 10.1007/s00216-010-4327-y.
- 55 Hidaka, H. (2012). Jpn. J. Clin. Chem. 41 (4): 336–342.
- 56 Murphy, S.A. and Nicolaou, A. (2013). Mol. Nutr. Food Res. 57 (8): 1336–1346. doi: 10.1002/mnfr.201200863.
- 57 Sandra, K. and Sandra, P. (2013). Curr. Opin. Chem. Biol. 17 (5): 847–853. doi: 10.1016/j.cbpa.2013.06.010.
- 58 Brügger, B. (2014). Annu. Rev. Biochem. 83: 79–98. doi: 10.1146/annurev-biochem-060713-035324.
- 59 Cajka, T. and Fiehn, O. (2014). TrAC Trends Anal. Chem. 61: 192–206. doi: 10.1016/j.trac.2014.04.017.
- 60 Li, L., Han, J., Wang, Z. et al. (2014). Int. J. Mol. Sci. 15 (6): 10492–10507. doi: 10.3390/ijms150610492.
- 61 Li, M., Yang, L., Bai, Y., and Liu, H. (2014). Anal. Chem. 86 (1): 161–175. doi: 10.1021/ac403554h.
- 62 Wang, C., Wang, M., and Han, X. (2015). Mol. BioSyst. 11 (3): 698–713. doi: 10.1039/c4mb00586d.
- 63 Han, X. (2016). Nat. Rev. Endocrinol. 12 (11): 668–679. doi: 10.1038/nrendo.2016.98.
- 64 Yang, K. and Han, X. (2016). Trends Biochem. Sci. 41 (11): 954–969. doi: 10.1016/j.tibs.2016.08.010.
- 65 Chen, H., Wei, F., Dong, X.Y. et al. (2017). Curr. Opin. Food Sci. 16: 80–87. doi: 10.1016/j.cofs.2017.08.003.
- 66 Jurowski, K., Kochan, K., Walczak, J. et al. (2017). Crit. Rev. Anal. Chem. 47 (5): 418–437. doi: 10.1080/10408347.2017.1310613.
- 67 Lam, S.M., Tian, H., and Shui, G. (2017). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (8): 752–761. doi: 10.1016/j.bbalip.2017.02.008.
- 68 Sethi, S. and Brietzke, E. (2017). Prostag. Oth. Lip. M. 128–129: 8–16. doi: 10.1016/j.prostaglandins.2016.12.002.
- 69 Hu, T. and Zhang, J.L. (2018). J. Sep. Sci. 41 (1): 351–372. doi: 10.1002/jssc.201700709.
- 70 Mitchell, T.W., Pham, H., Thomas, M.C., and Blanksby, S.J. (2009). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (26): 2722–2735. doi: 10.1016/j.jchromb.2009.01.017.
- 71 Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957). J. Biol. Chem. 226: 497–509.
- 72 Bligh, E.G. and Dyer, W.J. (1959). Can. J. Biochem. Physiol. 37 (8): 911–917.
- 73 Sheng, J., Vannela, R., and Rittmann, B.E. (2011). Bioresour. Technol. 102 (2): 1697–1703. doi: 10.1016/j.biortech.2010.08.007.
- 74 Matyash, V., Liebisch, G., Kurzchalia, T.V. et al. (2008). J. Lipid Res. 49 (5): 1137–1146. doi: 10.1194/jlr.D700041-JLR200.
- 75 Murray, K.K., Boyd, R.K., Eberlin, M.N. et al. (2013). Pure Appl. Chem. 85 (7): 1515–1609. doi: 10.1351/PAC-REC-06-04-06.
- 76 Murray, K.K., Boyd, R.K., Eberlin, M.N., et al. (2013). Terms from Iupac Recommendations. http://mass-spec.lsu.edu/msterms/index.php/Category:Final (accessed 25 January 2018).
- 77 Christie, W.W. (1993). In: Advances in Lipid Methodology – Two (ed. W.W. Christie), 69–111. Dundee, Scotland: The Oily Press.
- 78 Christie, W.W., Preparation of Ester Derivatives of Fatty Acids for Chromatographic Analysis. http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=40374 (accessed 23 January 2018).
- 79 Byrdwell, W.C., Emken, E.A., Neff, W.E., and Adlof, R.O. (1996). Lipids 31 (9): 919–935. doi: 10.1007/Bf02522685.
- 80 Holčapek, M., Lísa, M., Jandera, P., and Kabátová, N. (2005). J. Sep. Sci. 28 (12): 1315–1333. doi: 10.1002/jssc.200500088.
- 81 Lipsky, S.R. and Duffy, M.L. (1986). J. High Resol. Chromatogr. 9 (12): 725–730. doi: 10.1002/jhrc.1240091203.
- 82 Ruiz-Samblás, C., González-Casado, A., and Cuadros-Rodríguez, L. (2015). Crit. Rev. Food Sci. Nutr. 55 (11): 1618–1631. doi: 10.1080/10408398.2012.713045.
- 83 Christie, W.W., High-Temperature Gas Chromatography of Triacylglycerols. http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=40378 (accessed 23 January 2018).
- 84 Cole, R.B. (1997). In: Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, & Applications (ed. R.B. Cole), 577. New York: Wiley.
- 85 McEwen, C.N. and Larsen, B.S. (1997). In: Electrospray Ionization Mass Spectrometry: Fundamentals, Instrumentation, & Applications (ed. R.B. Cole), 177–202. New York: Wiley.
- 86 Yamashita, M. and Fenn, J.B. (1984). J. Phys. Chem. 88 (20): 4451–4459. doi: 10.1021/j150664a002.
- 87 Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B. (1985). Anal. Chem. 57 (3): 675–679. doi: 10.1021/ac00280a023.
- 88 Niessen, W.M.A. (1999). In: Chromatographic Science Series 79, 2e (ed. J. Cazes), 634. New York: Marcel Dekker, Inc.
- 89 Bruins, A.P., Henion, J.D., and Covey, T.R. (1987). Anal. Chem. 59 (22): 2642–2646. doi: 10.1021/ac00149a003.
- 90 May, J.C. and McLean, J.A. (2015). Anal. Chem. 87 (3): 1422–1436. doi: 10.1021/ac504720m.
- 91 Lapthorn, C., Pullen, F., and Chowdhry, B.Z. (2013). Mass Spectrom. Rev. 32 (1): 43–71. doi: 10.1002/mas.21349.
- 92 Kanu, A.B., Dwivedi, P., Tam, M. et al. (2008). J. Mass Spectrom. 43 (1): 1–22. doi: 10.1002/jms.1383.
- 93 Verbeck, G.F., Ruotolo, B.T., Sawyer, H.A. et al. (2002). J. Biomol. Technol. 13 (2): 56–61.
- 94 D'Atri, V., Causon, T., Hernandez-Alba, O. et al. (2018). J. Sep. Sci. 41 (1): 20–67. doi: 10.1002/jssc.201700919.
- 95 Zheng, X., Smith, R.D., and Baker, E.S. (2018). Curr. Opin. Chem. Biol. 42: 111–118. doi: 10.1016/j.cbpa.2017.11.009.
- 96 Hinz, C., Liggi, S., and Griffin, J.L. (2018). Curr. Opin. Chem. Biol. 42: 42–50. doi: 10.1016/j.cbpa.2017.10.018.
- 97 Kliman, M., May, J.C., and McLean, J.A. (2011). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811 (11): 935–945. doi: 10.1016/j.bbalip.2011.05.016.
- 98 Paglia, G., Kliman, M., Claude, E. et al. (2015). Anal. Bioanal. Chem. 407 (17): 4995–5007. doi: 10.1007/s00216-015-8664-8.
- 99 Bowman, A.P., Abzalimov, R.R., and Shvartsburg, A.A. (2017). J. Am. Soc. Mass Spectrom. 28 (8): 1552–1561. doi: 10.1007/s13361-017-1675-2.
- 100 Baglai, A., Gargano, A.F.G., Jordens, J. et al. (2017). J. Chromatogr. A 1530: 90–103. doi: 10.1016/j.chroma.2017.11.014.
- 101 Groessl, M., Graf, S., and Knochenmuss, R. (2015). Analyst 140 (20): 6904–6911. doi: 10.1039/c5an00838g.
- 102 Kyle, J.E., Zhang, X., Weitz, K.K. et al. (2016). Analyst 141 (5): 1649–1659. doi: 10.1039/c5an02062j.
- 103 Hancock, S.E., Poad, B.L.J., Batarseh, A. et al. (2017). Anal. Biochem. 524: 45–55. doi: 10.1016/j.ab.2016.09.014.
- 104 Wojcik, R., Webb, I.K., Deng, L. et al. (2017). Int. J. Mol. Sci. 18 (1): doi: 10.3390/ijms18010183.
- 105 Duffin, K.L., Henion, J.D., and Shieh, J.J. (1991). Anal. Chem. 63 (17): 1781–1788.
- 106 Byrdwell, W.C. (2003). In: Advances in Lipid Methodology – Five (ed. R.O. Adlof), 171–253. Bridgwater, England: P.J. Barnes & Associates.
- 107 Byrdwell, W.C. (2005). In: Modern Methods for Lipid Analysis by Liquid Chromatography/ Mass Spectrometry and Related Techniques (ed. W.C. Byrdwell), 298–412. Champaign, IL: AOCS Press.
- 108 Holčapek, M., Dvorakova, H., Lísa, M. et al. (2010). J. Chromatogr. A 1217 (52): 8186–8194. doi: 10.1016/j.chroma.2010.10.064.
- 109 Judge, E.J., Zheng, D., Chivukula, S. et al. (2017). Rapid Commun. Mass Spectrom. 31 (20): 1690–1698. doi: 10.1002/rcm.7953.
- 110 Laakso, P. and Voutilainen, P. (1996). Lipids 31 (12): 1311–1322. doi: 10.1007/BF02587918.
- 111 Mottram, H.R. and Evershed, R.P. (1996). Tetrahedron Lett. 37 (47): 8593–8596. doi: 10.1016/0040-4039(96)01964-8.
- 112
Hvattum, E. (2001). Rapid Commun. Mass Spectrom. 15 (3): 187–190. doi: 10.1002/1097-0231(20010215)15:3<187::AID-RCM211>3.0.CO;2-T.
10.1002/1097-0231(20010215)15:3<187::AID-RCM211>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 113 Dorschel, C.A. (2002). J. Am. Oil Chem. Soc. 79 (8): 749–753.
- 114 Kalo, P., Kemppinen, A., Ollilainen, V., and Kuksis, A. (2003). Int. J. Mass Spectrom. 229 (3): 167–180. doi: 10.1016/S1387-3806(03)00302-6.
- 115 Kalo, P., Kemppinen, A., Ollilainen, V., and Kuksis, A. (2004). Lipids 39 (9): 915–928. doi: 10.1007/s11745-004-1314-3.
- 116 Kuksis, A. and Itabashi, Y. (2005). Methods 36 (2): 172–185. doi: 10.1016/j.ymeth.2004.11.001.
- 117 Leskinen, H., Suomela, J.P., and Kallio, H. (2007). Rapid Commun. Mass Spectrom. 21 (14): 2361–2373. doi: 10.1002/rcm.3090.
- 118 Murphy, R.C., Leiker, T.J., and Barkley, R.M. (2011). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811 (11): 776–783. doi: 10.1016/j.bbalip.2011.06.019.
- 119 Glenn, K.C., Shieh, J.J., and Laird, D.M. (1992). Endocrinology 131 (3): 1115–1124. doi: 10.1210/endo.131.3.1505455.
- 120 Haigh, W.G., Yoder, T.F., Ericson, L. et al. (1996). Biochim. Biophys. Acta Lipids Lipid Metab. 1299 (2): 183–190.
- 121 Kallio, H., Currie, G., Gibson, R., and Kallio, S. (1997). Ann. Chim. 87 (3–4): 187–198.
- 122 Cheng, C., Gross, M.L., and Pittenauer, E. (1998). Anal. Chem. 70 (20): 4417–4426.
- 123 Hsu, F.F. and Turk, J. (1999). J. Am. Soc. Mass Spectrom. 10 (7): 587–599. doi: 10.1016/S1044-0305(99)00035-5.
- 124 Hsu, F.F. and Turk, J. (2010). J. Am. Soc. Mass Spectrom. 21 (4): 657–669. doi: 10.1016/j.jasms.2010.01.007.
- 125 McAnoy, A.M., Wu, C.C., and Murphy, R.C. (2005). J. Am. Soc. Mass Spectrom. 16 (9): 1498–1509. doi: 10.1016/j.jasms.2005.04.017.
- 126 Grossert, J.S., Herrera, L.C., Ramaley, L., and Melanson, J.E. (2014). J. Am. Soc. Mass Spectrom. 25 (8): 1421–1440. doi: 10.1007/s13361-014-0917-9.
- 127 Han, X. and Gross, R.W. (2001). Anal. Biochem. 295 (1): 88–100. doi: 10.1006/abio.2001.5178.
- 128 Byrdwell, W.C. and Neff, W.E. (2002). Rapid Commun. Mass Spectrom. 16 (4): 300–319. doi: 10.1002/rcm.581.
- 129 Byrdwell, W.C. (2005). In: Modern Methods for Lipid Analysis by Liquid Chromatography/ Mass Spectrometry and Related Techniques (ed. W.C. Byrdwell), 510–576. Champaign, IL: AOCS Press.
- 130 Byrdwell, W.C. (2010). J. Chromatogr. A 1217 (25): 3992–4003. doi: 10.1016/j.chroma.2009.11.101.
- 131 Byrdwell, W.C. (2011). Anal. Bioanal. Chem. 401 (10): 3317–3334. doi: 10.1007/s00216-011-5406-4.
- 132 Byrdwell, W.C. (2013). J. Chromatogr. A 1320: 48–65. doi: 10.1016/j.chroma.2013.10.031.
- 133 Triebl, A., Hartler, J., Trötzmüller, M., and Köfeler, H.C. (2017). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (8): 740–746. doi: 10.1016/j.bbalip.2017.03.004.
- 134 Rustam, Y.H. and Reid, G.E. (2018). Anal. Chem. 90 (1): 374–397. doi: 10.1021/acs.analchem.7b04836.
- 135 Wang, M., Wang, C., and Han, X. (2017). Mass Spectrom. Rev. 36 (6): 693–714. doi: 10.1002/mas.21492.
- 136 Han, X. and Gross, R.W. (2003). J. Lipid Res. 44 (6): 1071–1079. doi: 10.1194/jlr.R300004-JLR200.
- 137 Han, X. and Gross, R.W. (2005). Mass Spectrom. Rev. 24 (3): 367–412. doi: 10.1002/mas.20023.
- 138 Han, X. (2017). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862 (8): 804–807. doi: 10.1016/j.bbalip.2017.02.012.
- 139 Gang, K.Q., Zhou, D.Y., Lu, T. et al. (2018). Food Chem. 245: 53–60. doi: 10.1016/j.foodchem.2017.10.077.
- 140 Liu, M., Wei, F., Lv, X. et al. (2018). Food Chem. 242: 338–344. doi: 10.1016/j.foodchem.2017.09.069.
- 141 Galuch, M.B., Carbonera, F., Magon, T.F.S. et al. (2018). J. Braz. Chem. Soc. 29 (3): 631–638. doi: 10.21577/0103-5053.20170177.
- 142 Khoury, S., Pouyet, C., Lyan, B., and Pujos-Guillot, E. (2018). Anal. Bioanal. Chem. 410 (2): 633–647. doi: 10.1007/s00216-017-0764-1.
- 143 da Silveira, R., Vágula, J.M., de Lima Figueiredo, I. et al. (2017). Food Res. Int. 102: 43–50. doi: 10.1016/j.foodres.2017.09.076.
- 144 Chen, Q., Wang, X., Cong, P. et al. (2017). Lipids 52 (12): 1045–1058. doi: 10.1007/s11745-017-4305-7.
- 145 Lin, J.T., Hou, C.T., Dulay, R.M.R. et al. (2017). Biocatal. Agric. Biotechnol. 12: 148–151. doi: 10.1016/j.bcab.2017.09.010.
- 146 Sokol, E., Ulven, T., Færgeman, N.J., and Ejsing, C.S. (2015). Eur. J. Lipid Sci. Technol. 117 (6): 751–759. doi: 10.1002/ejlt.201400575.
- 147 Lin, J.T. and Chen, G.Q. (2017). Biocatal. Agric. Biotechnol. 10: 167–173. doi: 10.1016/j.bcab.2017.03.005.
- 148 Lin, J.T. (2007). J. Liq. Chromatogr. Relat. Technol. 30 (14): 2005–2020. doi: 10.1080/10826070701435020.
- 149 Abreu, S., Solgadi, A., and Chaminade, P. (2017). J. Chromatogr. A 1514: 54–71. doi: 10.1016/j.chroma.2017.07.063.
- 150 Mottram, H.R., Woodbury, S.E., and Evershed, R.P. (1997). Rapid Commun. Mass Spectrom. 11 (12): 1240–1252. doi: 10.1002/(SICI)1097-0231(199708)11:12<1240::AID-RCM990>3.0.CO;2-5.
- 151 Mottram, H.R. (2005). In: Modern Methods for Lipid Analysis by Liquid Chromatography/ Mass Spectrometry and Related Techniques (ed. W.C. Byrdwell), 276–297. Champaign, IL: AOCS Press.
- 152 Holčapek, M. and Lísa, M. (2017). In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques (ed. M. Holčapek and W.C. Byrdwell), 115–140. Champaign, IL: Elsevier/AOCS Press.
- 153 Momchilova, S. and Nikolova-Damyanova, B. (2003). J. Sep. Sci. 26 (3–4): 261–270. doi: 10.1002/jssc.200390032.
- 154 Nikolova-Damyanova, B. (2009). J. Chromatogr. A 1216 (10): 1815–1824. doi: 10.1016/j.chroma.2008.10.097.
- 155 Leskinen, H., Suomela, J.P., Pinta, J., and Kallio, H. (2008). Anal. Chem. 80 (15): 5788–5793. doi: 10.1021/ac8004132.
- 156 Nordby, H.E. and Yelenosky, G. (1984). J. Am. Oil Chem. Soc. 61 (6): 1028–1031. doi: 10.1007/BF02636210.
- 157 Plattner, R.D. and Payne-Wahl, K. (1979). Lipids 14 (2): 152–153. doi: 10.1007/BF02533865.
- 158 Bezard, J.A. and Ouedraogo, M.A. (1980). J. Chromatogr. A 196 (2): 279–293. doi: 10.1016/S0021-9673(00)80447-1.
- 159 Litchfield, C. (1968). Lipids 3 (2): 170–177. doi: 10.1007/BF02531736.
- 160 Herslöf, B., Podlaha, O., and Töregård, B. (1979). J. Am. Oil Chem. Soc. 56 (9): 864–866. doi: 10.1007/BF02909537.
- 161 Podlaha, O. and Töregård, B. (1982). J. High Resol. Chromatogr. 5 (10): 553–558. doi: 10.1002/jhrc.1240051007.
- 162 Diefenbacher, A. and Pocklington, W.D. (1992). Standard Methods for the Analysis of Oils, Fats and Derivatives. 1st Supplement to the Revised 7th Revised and Enlarged Edition., vol. 1, 151. Oxford, England: Blackwell Scientific Publications.
- 163 El-Hamdy, A.H. and Perkins, E.G. (1981). J. Am. Oil Chem. Soc. 58 (9): 867–872. doi: 10.1007/BF02672960.
- 164 Chen, S.H. and Chuang, Y.J. (2002). Anal. Chim. Acta 465 (1–2): 145–155. doi: 10.1016/S0003-2670(02)00095-8.
- 165 Lima, E.S. and Abdalla, D.S.P. (2002). Anal. Chim. Acta 465 (1–2): 81–91. doi: 10.1016/S0003-2670(02)00206-4.
- 166 Bielawska, K., Dziakowska, I., and Roszkowska-Jakimiec, W. (2010). Toxicol. Mech. Methods 20 (9): 526–537. doi: 10.3109/15376516.2010.515081.
- 167 Yoshida, H., Tomiyama, Y., and Mizushina, Y. (2010). Food Chem. 123 (2): 210–215. doi: 10.1016/j.foodchem.2010.04.010.
- 168 Cozzolino, R. and De Giulio, B. (2011). Eur. J. Lipid Sci. Technol. 113 (2): 160–167. doi: 10.1002/ejlt.201000429.
- 169 Zeb, A. (2015). Free Radic. Res. 49 (5): 549–564. doi: 10.3109/10715762.2015.1022540.
- 170 Řezanka, T., Olšovská, J., Sobotka, M., and Sigler, K. (2009). Curr. Anal. Chem. 5 (1): 1–25. doi: 10.2174/157341109787047862.
- 171 Hammond, E.W. (2002). J. Sci. Food Agric. 82 (1): 5–11. doi: 10.1002/jsfa.1031.
- 172
Do Nguyen, H.T., Ramli, A., and Kee, L.M. (2017). Nihon Enerugi Gakkaishi 96 (12): 532–537. doi: 10.3775/jie.96.532.
10.3775/jie.96.532 Google Scholar
- 173 Ståhlman, M., Ejsing, C.S., Tarasov, K. et al. (2009). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 877 (26): 2664–2672. doi: 10.1016/j.jchromb.2009.02.037.
- 174 Janssen, H.G., Steenbergen, H., and de Koning, S. (2009). Eur. J. Lipid Sci. Technol. 111 (12): 1171–1184. doi: 10.1002/ejlt.200900074.
- 175 Wakelam, M.J.O. and Clark, J. (2011). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1811 (11): 758–762. doi: 10.1016/j.bbalip.2011.09.004.
- 176 Restuccia, D., Spizzirri, U.G., Puoci, F. et al. (2012). Food Rev. Int. 28 (1): 1–46. doi: 10.1080/87559129.2011.563398.
- 177 Contarini, G. and Povolo, M. (2013). Int. J. Mol. Sci. 14 (2): 2808–2831. doi: 10.3390/ijms14022808.
- 178 Pimentel, L., Gomes, A., Pintado, M., and Rodríguez-Alcalá, L.M. (2016). J. Anal. Methods Chem. 2016: doi: 10.1155/2016/9827369.
- 179 Myher, J.J., Kuksis, A., Geher, K. et al. (1996). Lipids 31 (2): 207–215.
- 180 Itabashi, Y. and Kuksis, A. (1997). Anal. Biochem. 254 (1): 49–56. doi: 10.1006/abio.1997.2418.
- 181 Yamashina, T., Lee, J.S., and Itabashi, Y. (2006). Bunseki Kagaku 55 (9): 643–650. doi: 10.2116/bunsekikagaku.55.643.
- 182 Honda, M., Kashima, A., Takahashi, K., and Itabashi, Y. (2009). Nippon Suisan Gakkaishi Jpn. Ed. 75 (6): 1061–1069. doi: 10.2331/suisan.75.1061.
- 183 Sjövall, O., Kuksis, A., Marai, L., and Myher, J.J. (1997). Lipids 32 (11): 1211–1218. doi: 10.1007/s11745-997-0155-4.
- 184 Sjovall, O., Kuksis, A., and Kallio, H. (2001). J. Chromatogr. A 905 (1–2): 119–132. doi: 10.1016/S0378-4347(00)00530-2.
- 185 Sjövall, O., Kuksis, A., and Kallio, H. (2001). Lipids 36 (12): 1347–1356. doi: 10.1007/s11745-001-0851-0.
- 186 Sjövall, O., Kuksis, A., and Kallio, H. (2002). Lipids 37 (1): 81–94. doi: 10.1007/s11745-002-0867-5.
- 187 Byrdwell, W.C. and Neff, W.E. (2004). J. Am. Oil Chem. Soc. 81 (1): 13–26. doi: 10.1007/s11746-004-0853-3.
- 188 Kuksis, A. (2007). Front. Biosci. 12 (9): 3203–3246. doi: 10.2741/2307.
- 189 Schuyl, P.J.W., De Joode, T., Vasconcellos, M.A., and Duchateau, G.S.M.J.E. (1998). J. Chromatogr. A 810 (1–2): 53–61. doi: 10.1016/S0021-9673(98)00277-5.
- 190 Liang, P., Li, R., Sun, H. et al. (2018). Food Chem. 245: 806–811. doi: 10.1016/j.foodchem.2017.11.108.
- 191 Ali, A.H., Wei, W., Abed, S.M. et al. (2018). LWT Food Sci. Technol. 90: 424–432. doi: 10.1016/j.lwt.2017.12.058.
- 192 Blanco-Zubiaguirre, L., Ribechini, E., Degano, I. et al. (2018). Microchem. J. 137: 190–203. doi: 10.1016/j.microc.2017.10.017.
- 193 Woodfield, H.K., Cazenave-Gassiot, A., Haslam, R.P. et al. (2018). Biophys. Acta Mol. Cell Biol. Lipids 1863 (3): 339–348. doi: 10.1016/j.bbalip.2017.12.010.
- 194 Zhou, X., Zhou, D.Y., Lu, T. et al. (2018). Food Chem. 241: 97–103. doi: 10.1016/j.foodchem.2017.08.076.
- 195 Liu, Z.Y., Zhou, D.Y., Wu, Z.X. et al. (2018). Food Chem. 239: 1175–1181. doi: 10.1016/j.foodchem.2017.07.035.
- 196 Liu, Z.Y., Zhou, D.Y., Zhao, Q. et al. (2017). Food Chem. 219: 419–427. doi: 10.1016/j.foodchem.2016.09.160.
- 197 Facchini, L., Losito, I., Cataldi, T.R.I., and Palmisano, F. (2018). J. Mass Spectrom. 53 (1): 1–20. doi: 10.1002/jms.4029.
- 198 Řezanka, T., Kolouchová, I., Gharwalová, L. et al. (2017). Lipids 52 (12): 1007–1017. doi: 10.1007/s11745-017-4294-6.
- 199 Byrdwell, W.C. (2017). Anal. Chem. 89 (19): 10537–10546. doi: 10.1021/acs.analchem.7b02753.
- 200 Riewe, D., Wiebach, J., and Altmann, T. (2017). Plant Physiol. 175 (2): 600–618. doi: 10.1104/pp.17.00470.
- 201 Xia, W. and Budge, S.M. (2017). Compr. Rev. Food Sci. Food Saf. 16 (4): 735–758. doi: 10.1111/1541-4337.12276.
- 202 Rodríguez-López, C.E., Hernández-Brenes, C., Treviño, V., and Díaz de la Garza, R.I. (2017). BMC Plant Biol. 17 (1): doi: 10.1186/s12870-017-1103-6.
- 203 Li, Q., Zhao, Y., Zhu, D. et al. (2017). Food Chem. 224: 302–309. doi: 10.1016/j.foodchem.2016.12.083.
- 204 Xu, P., Wang, Y., Chen, J. et al. (2017). Aquac. Int. 25 (3): 1123–1143. doi: 10.1007/s10499-016-0102-1.
- 205
Walczak, J., Bocian, S., Kowalkowski, T. et al. (2017). Food Anal. Methods 10 (5): 1264–1272. doi: 10.1007/s12161-016-0655-7.
10.1007/s12161‐016‐0655‐7 Google Scholar
- 206 Ali, A.H., Zou, X., Lu, J. et al. (2017). Food Chem. 221: 58–66. doi: 10.1016/j.foodchem.2016.10.043.
- 207 van Dam, E.P., van den Berg, K.J., Proaño Gaibor, A.N., and van Bommel, M. (2017). Int. J. Mass Spectrom. 413: 33–42. doi: 10.1016/j.ijms.2016.09.004.
- 208 Kalo, P. (2013). Lipid Technol. 25 (10): 230–234. doi: 10.1002/lite.201300305.
- 209 Janssen, H.G., Hrnčiřík, K., Szórádi, A., and Leijten, M. (2006). J. Chromatogr. A 1112 (1–2): 141–147. doi: 10.1016/j.chroma.2005.11.097.
- 210 Kallio, H., Nylund, M., Boström, P., and Yang, B. (2017). Food Chem. 233: 351–360. doi: 10.1016/j.foodchem.2017.04.122.
- 211 Jakab, A., Jablonkai, I., and Forgács, E. (2003). Rapid Commun. Mass Spectrom. 17 (20): 2295–2302.
- 212 Fauconnot, L., Hau, J., Aeschlimann, J.M. et al. (2004). Rapid Commun. Mass Spectrom. 18 (2): 218–224.
- 213 Šala, M., Lísa, M., Campbell, J.L., and Holčapek, M. (2016). Rapid Commun. Mass Spectrom. 30 (2): 256–264. doi: 10.1002/rcm.7430.
- 214 Lin, J.T., Fagerquist, C.K., and Chen, G.Q. (2016). J. Am. Oil Chem. Soc. 93 (2): 183–191. doi: 10.1007/s11746-015-2769-2.
- 215 Byrdwell, W.C. (2015). J. Am. Oil Chem. Soc. 92 (11–12): 1533–1547. doi: 10.1007/s11746-015-2735-z.
- 216 Ramaley, L., Cubero Herrera, L., and Melanson, J.E. (2015). JAOCS 92 (3): 323–334. doi: 10.1007/s11746-015-2604-9.
- 217 Li, S., Xu, J., Chen, J. et al. (2014). Rapid Commun. Mass Spectrom. 28 (3): 245–255. doi: 10.1002/rcm.6784.
- 218 Ramaley, L., Herrera, L.C., and Melanson, J.E. (2013). Rapid Commun. Mass Spectrom. 27 (11): 1251–1259. doi: 10.1002/rcm.6569.
- 219 Cubero Herrera, L., Ramaley, L., Potvin, M.A., and Melanson, J.E. (2013). Food Chem. 139 (1–4): 655–662. doi: 10.1016/j.foodchem.2012.12.059.
- 220 Lévêque, N.L., Héron, S., and Tchapla, A. (2010). J. Mass Spectrom. 45 (3): 284–296. doi: 10.1002/jms.1713.
- 221 Byrdwell, W.C. (1998). Int. News Fats Oils Rel. Mater. 9 (10): 986–997.
- 222 Byrdwell, W.C. (2005). In: HPLC of Acyl Lipids (ed. J.T. Lin and T.A. McKeon), 269–314. New York, NY: HNB Publishing.
- 223 Tyrefors, L.N., Moulder, R.X., and Markides, K.E. (1993). Anal. Chem. 65 (20): 2835–2840. doi: 10.1021/ac00068a021.
- 224 Byrdwell, W.C. and Emken, E.A. (1995). Lipids 30 (2): 173–175. doi: 10.1007/BF02538272.
- 225 Neff, W.E. and Byrdwell, W.C. (1995). J. Liq. Chromatogr. 18 (20): 4165–4181.
- 226 Neff, W.E. and Byrdwell, W.C. (1995). J. Am. Oil Chem. Soc. 72 (10): 1185–1191.
- 227 Byrdwell, W.C. and Neff, W.E. (1996). J. Liq. Chromatogr. Relat. Technol. 19 (14): 2203–2225.
- 228 Byrdwell, W.C. (2005). Lipids 40 (4): 383–417. doi: 10.1007/s11745-006-1398-9.
- 229 Byrdwell, W.C. (2015). Anal. Bioanal. Chem. 407 (17): 5143–5160. doi: 10.1007/s00216-015-8590-9.
- 230 Řezanka, T. and Sigler, K. (2014). Lipids 49 (12): 1251–1260. doi: 10.1007/s11745-014-3959-7.
- 231 Řezanka, T., Pádrová, K., and Sigler, K. (2017). Anal. Biochem. 524: 3–12. doi: 10.1016/j.ab.2016.05.028.
- 232 Leskinen, H.M., Suomela, J.P., and Kallio, H.P. (2010). Rapid Commun. Mass Spectrom. 24 (1): 1–5. doi: 10.1002/rcm.4346.
- 233 Řezanka, T., Lukavský, J., Nedbalová, L. et al. (2012). Phytochemistry 80: 17–27. doi: 10.1016/j.phytochem.2012.05.021.
- 234 Řezanka, T., Kolouchová, I., Čejková, A. et al. (2013). J. Sep. Sci. 36 (20): 3310–3320. doi: 10.1002/jssc.201300657.
- 235 Řezanka, T., Nedbalová, L., and Sigler, K. (2016). J. Chromatogr. A 1467: 261–269. doi: 10.1016/j.chroma.2016.07.006.
- 236 Byrdwell, W.C., Neff, W.E., and List, G.R. (2001). J. Agric. Food Chem. 49 (1): 446–457. doi: 10.1021/jf0008801.
- 237 Byrdwell, W.C. and Neff, W.E. (1997). In: New Techniques and Applications in Lipid Analysis (ed. R.E. McDonald and M.M. Mossoba), 45–80. Champaign, IL: AOCS Press.
- 238
Ben Arfa, K., de Person, M., Hmida, D. et al. (2017). Food Anal. Methods 10 (8): 2827–2838. doi: 10.1007/s12161-017-0851-0.
10.1007/s12161‐017‐0851‐0 Google Scholar
- 239 Hu, N., Wei, F., Lv, X. et al. (2014). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 972: 65–72. doi: 10.1016/j.jchromb.2014.09.039.
- 240 Nedbalová, L., Střížek, A., Sigler, K., and Řezanka, T. (2016). Phytochemistry 130: 64–76. doi: 10.1016/j.phytochem.2016.06.001.
- 241 Wang, Q.L., Jin, Y.G., Lu, S.L. et al. (2017). Mod. Food Sci. Technol. 33 (2): 210–216. doi: 10.13982/j.mfst.1673-9078.2017.2.032.
- 242 Luo, Z.G., He, J.J., He, J.M. et al. (2016). J. Chin. Mass Spectrom. Soc. 37 (5): 393–400. doi: 10.7538/zpxb.youxian.2016.0035.
- 243 Byrdwell, W.C. (2016). Lipids 51 (2): 211–227. doi: 10.1007/s11745-015-4101-1.
- 244 Beccaria, M., Costa, R., Sullini, G. et al. (2015). Anal. Bioanal. Chem. 407 (17): 5211–5225. doi: 10.1007/s00216-015-8718-y.
- 245 Lísa, M. and Holčapek, M. (2008). J. Chromatogr. A 1198–1199 (1–2): 115–130. doi: 10.1016/j.chroma.2008.05.037.
- 246 Geng, P., Harnly, J.M., and Chen, P. (2015). J. Agric. Food Chem. 63 (27): 6189–6211. doi: 10.1021/acs.jafc.5b01599.
- 247 Háková, E., Vrkoslav, V., Míková, R. et al. (2015). Anal. Bioanal. Chem. 407 (17): 5175–5188. doi: 10.1007/s00216-015-8537-1.
- 248 Dong, X.Y., Zhong, J., Wei, F. et al. (2015). J. Am. Oil Chem. Soc. 92 (2): 233–242. doi: 10.1007/s11746-014-2580-5.
- 249 Fanali, C., Beccaria, M., Salivo, S. et al. (2015). J. Sep. Sci. 38 (18): 3151–3160. doi: 10.1002/jssc.201500466.
- 250 Wei, F., Hu, N., Lv, X. et al. (2015). J. Chromatogr. A 1404: 60–71. doi: 10.1016/j.chroma.2015.05.058.
- 251 Byrdwell, W.C. (2015). Lipid Technol. 27 (11): 258–261. doi: 10.1002/lite.201500054.
- 252 Beccaria, M., Sullini, G., Cacciola, F. et al. (2014). J. Chromatogr. A 1360: 172–187. doi: 10.1016/j.chroma.2014.07.073.
- 253 Linderborg, K.M., Kalpio, M., Mäkelä, J. et al. (2014). Food Chem. 146: 583–590. doi: 10.1016/j.foodchem.2013.09.092.
- 254 Kurvinen, J.P., Rua, P., Sjövall, O., and Kallio, H. (2001). Rapid Commun. Mass Spectrom. 15 (13): 1084–1091. doi: 10.1002/rcm.340.
- 255 Robb, D.B., Covey, T.R., and Bruins, A.P. (2000). Anal. Chem. 72 (15): 3653–3659. doi: 10.1021/ac0001636.
- 256 Hanold, K.A., Fischer, S.M., Cormia, P.H. et al. (2004). Anal. Chem. 76 (10): 2842–2851. doi: 10.1021/ac035442i.
- 257 Rauha, J.P., Vuorela, H., and Kostiainen, R. (2001). J. Mass Spectrom. 36 (12): 1269–1280. doi: 10.1002/jms.231.
- 258 Keski-Hynnilä, H., Kurkela, M., Elovaara, E. et al. (2002). Anal. Chem. 74 (14): 3449–3457. doi: 10.1021/ac011239g.
- 259 Leinonen, A., Kuuranne, T., and Kostiainen, R. (2002). J. Mass Spectrom. 37 (7): 693–698. doi: 10.1002/jms.328.
- 260 Kauppila, T.J., Kuuranne, T., Meurer, E.C. et al. (2002). Anal. Chem. 74 (21): 5470–5479. doi: 10.1021/ac025659x.
- 261 Kauppila, T., Kotiaho, T., and Kostiainen, R. (2002). Proc. 50th ASMS Conf. Mass Spectrom. Allied Top. 801–802.
- 262 Raffaelli, A. and Saba, A. (2003). Mass Spectrom. Rev. 22 (5): 318–331. doi: 10.1002/mas.10060.
- 263 Lembcke, J., Ceglarek, U., Fiedler, G.M. et al. (2005). J. Lipid Res. 46 (1): 21–26. doi: 10.1194/jlr.C400004-JLR200.
- 264 Delobel, A., Touboul, D., and Laprévote, O. (2005). Eur. J. Mass Spectrom. 11 (4): 409–417. doi: 10.1255/ejms.760.
- 265 Cai, S.S. and Syage, J.A. (2006). Anal. Chem. 78 (4): 1191–1199. doi: 10.1021/ac0515834.
- 266 Cai, S.S. and Syage, J.A. (2006). J. Chromatogr. A 1110 (1–2): 15–26. doi: 10.1016/j.chroma.2006.01.050.
- 267 Gómez-Ariza, J.L., Arias-Borrego, A., and García-Barrera, T. (2006). Rapid Commun. Mass Spectrom. 20 (8): 1181–1186. doi: 10.1002/rcm.2432.
- 268 Gómez-Ariza, J.L., Arias-Borrego, A., García-Barrera, T., and Beltran, R. (2006). Talanta 70 (4): 859–869. doi: 10.1016/j.talanta.2006.02.019.
- 269 Cai, S.S., Short, L.C., Syage, J.A. et al. (2007). J. Chromatogr. A 1173 (1–2): 88–97. doi: 10.1016/j.chroma.2007.10.008.
- 270 Fredenhagen, A. and Kühnöl, J. (2014). J. Mass Spectrom. 49 (8): 727–736. doi: 10.1002/jms.3401.
- 271 Marchi, I., Rudaz, S., and Veuthey, J.L. (2009). Talanta 78 (1): 1–18. doi: 10.1016/j.talanta.2008.11.031.
- 272 Kauppila, T.J., Syage, J.A., and Benter, T. (2017). Mass Spectrom. Rev. 36 (3): 423–449. doi: 10.1002/mas.21477.
- 273 Byrdwell, W.C. (2017). In: Handbook of Advanced Chromatography/Mass Spectrometry Techniques (ed. M. Holčapek and W.C. Byrdwell), 365–405. Champaign, IL: Elsevier/AOCS Press.
- 274 Byrdwell, W.C. (2011). In: Extreme Chromatography: Faster, Hotter, Smaller (ed. W.C. Byrdwell and M. Holčapek), 255–299. Urbana, IL: AOCS Press.
- 275 Rejšek, J., Vrkoslav, V., Vaikkinen, A. et al. (2016). Anal. Chem. 88 (24): 12279–12286. doi: 10.1021/acs.analchem.6b03465.