Metathesized Vegetable Oils for the Production of Polyurethane Polymers
Prasanth K.S. Pillai
Trent University, Peterborough, Ontario, Canada
Search for more papers by this authorSuresh S. Narine
Trent University, Peterborough, Ontario, Canada
Search for more papers by this authorPrasanth K.S. Pillai
Trent University, Peterborough, Ontario, Canada
Search for more papers by this authorSuresh S. Narine
Trent University, Peterborough, Ontario, Canada
Search for more papers by this authorAbstract
Polyurethanes (PUs) produced by the polycondensation reaction of polyols and diisocyanates are an important class of polymers with a wide variety of applications. Traditionally, these materials are derived from petroleum feedstocks. Presently, vegetable oils are attracting attention as an alternative to petroleum for the development of bio-based polyols and PUs. To mitigate the inherent limitations of the triacylglycerol (TAG) structures of the natural oil in PUs, new strategies have been developed for the transformation of the natural feedstocks. Olefin metathesis is a versatile and powerful modification approach used on vegetable oil to produce fine chemicals and novel metathesized triacylglycerol (MTAG) structures including TAG-like structures with terminal functionality and oligomers of TAGs. The present article reports on the recent development in the application of the product of metathesis-modified natural oils for the preparation of polyols and PUs. It focuses on the role of the unique structures of the polyols obtained from MTAG on the final PU properties.
References
- 1Szycher, M. (1999). Szycher's Handbook of Polyurethanes. CRC Press.
- 2Guo, A., Demydov, D., Zhang, W., and Petrovic, Z.S. (2002). J. Polym. Environ. 10: 49–52.
- 3Ionescu, M. (2005). Chemistry and Technology of Polyols for Polyurethanes. Smithers Rapra Publishing.
- 4Petrovic, Z.S., Guo, A., Javni, I. et al. (2008). Polym. Int. 57: 275–281.
- 5Narine, S., Kong, X., Bouzidi, L., and Sporns, P. (2007). J. Am. Oil Chem. Soc. 84: 55–63.
- 6Somani, K.P., Kansara, S.S., Patel, N.K., and Rakshit, A.K. (2003). Int. J. Adhes. Adhes. 23: 269–275.
- 7Velayutham, T.S., Majid, W.H.A., Ahmad, A.B. et al. (2009). Prog. Org. Coat. 66: 367–371.
- 8Ugarte, L., Saralegi, A., Fernández, R. et al. (2014). Ind. Crop. Prod. 62: 545–551.
- 9Piszczyk, Ł., Strankowski, M., Danowska, M. et al. (2014). Eur. Polym. J. 57: 143–150.
- 10Tan, S., Abraham, T., Ference, D., and Macosko, C.W. (2011). Polymer 52: 2840–2846.
- 11Campanella, A., Bonnaillie, L.M., and Wool, R.P. (2009). J. Appl. Polym. Sci. 112: 2567–2578.
- 12John, J., Bhattacharya, M., and Turner, R.B. (2002). J. Appl. Polym. Sci. 86: 3097–3107.
- 13Sharma, V. and Kundu, P.P. (2008). Prog. Polym. Sci. 33: 1199–1215.
- 14Babb, D.A. (2011). In: Synthetic Biodegradable Polymers. Advances in Polymer Science, vol. 245 (ed. B. Rieger, A. Kunkel, G.W. Coates, et al.). Berlin, Heidelberg: Springer.
- 15David, J., Vojtová, L., Bednařík, K. et al. (2010). Environ. Chem. Lett. 8: 381–385.
- 16Kong, X. and Narine, S.S. (2007). Biomacromolecules 8: 2203–2209.
- 17Kong, X. and Narine, S.S. (2008). Biomacromolecules 9: 1424–1433.
- 18Kong, X.H., Tan, S.S., and Narine, S.S. (2009). J. Appl. Polym. Sci. 114: 139–148.
- 19Petrovic, Z.S. (2008). Polym. Rev. 48: 109–155.
- 20Petrovic, Z.S., Cvetkovic, I., Hong, D. et al. (2010). Eur. J. Lipid Sci. Technol. 112: 97–102.
- 21Desroches, M., Escouvois, M., Auvergne, R. et al. (2012). Polym. Rev. 52: 38–79.
- 22Deshmukh, P.H. and Blechert, S. (2007). Dalton Trans. 2479–2491.
- 23Floros, M.C., Leão, A.L., and Narine, S.S. (2014). Biomed. Res. Int. 2014: 14.
- 24Raghunanan, L., Yue, J., and Narine, S.S. (2014). J. Am. Oil Chem. Soc. 91: 349–356.
- 25Guo, A., Zhang, W., and Petrovic, Z.S. (2006). J. Mater. Sci. 41: 4914–4920.
- 26Li, Y., Luo, X., and Hu, S. (2015). In: Bio-Based Polyols and Polyurethanes, 15–43. Springer.
10.1007/978-3-319-21539-6_2 Google Scholar
- 27Petrović, Z.S., Zhang, W., and Javni, I. (2005). Biomacromolecules 6: 713–719.
- 28Franke, R., Selent, D., and Börner, A. (2012). Chem. Rev. 112: 5675–5732.
- 29Chen, R., Zhang, C., and Kessler, M.R. (2015). J. Appl. Polym. Sci. 132.
- 30Tan, S.G. and Chow, W.S. (2010). Polym. Plastics Technol. Eng. 49: 1581–1590.
- 31Zlatanic, A., Lava, C., Zhang, W., and Petrovic, Z.S. (2004). J. Polym. Sci. B-Polym. Phys. 42: 809–819.
- 32Petrović, Z.S., Zlatanić, A., Lava, C.C., and Sinadinović-Fišer, S. (2002). Eur. J. Lipid Sci. Technol. 104: 293–299.
- 33Adhvaryu, A., Liu, Z., and Erhan, S. (2005). Ind. Crop. Prod. 21: 113–119.
- 34Pawlik, H., Prociak, A., and Pielichowski, J. (2009). Czasopismo Techniczne Chemia 106: 111–117.
- 35Zhao, H.P., Zhang, J.F., Susan Sun, X., and Hua, D.H. (2008). J. Appl. Polym. Sci. 110: 647–656.
- 36Arniza, M., Hoong, S., Idris, Z. et al. (2015). J. Am. Oil Chem. Soc. 92: 243–255.
- 37Zlatanić, A., Javni, I., Ionescu, M. et al. (2014). J. Cell. Plast..
- 38Llevot, A., Dannecker, P.K., von Czapiewski, M. et al. (2016). Chem. A Eur. J. 22: 11510–11521.
- 39Malacea, R. and Dixneuf, P.H. (2010). In: Green Metathesis Chemistry. NATO Science for Peace and Security Series A: Chemistry and Biology (ed. V. Dragutan, A. Demonceau, I. Dragutan and E.S. Finkelshtein). Dordrecht: Springer.
- 40Rybak, A., Fokou, P.A., and Meier, M.A. (2008). Eur. J. Lipid Sci. Technol. 110: 797–804.
- 41Lummiss, J.A.M., Oliveira, K.C., Pranckevicius, A.M.T. et al. (2012). J. Am. Chem. Soc. 134: 18889–18891.
- 42Mol, J. (2004). Top. Catal. 27: 97–104.
- 43Mol, J.C. (2004). J. Mol. Catal. A Chem. 213: 39–45.
- 44Hunt, Z. and Christensen, S.A. (2015). Polymers containing metathesized natural oil derivatives. Google Patents.
- 45Jose, J., Pourfallah, G., Merkley, D. et al. (2014). Polym. Chem. 5: 3203–3213.
- 46Carter, J.D., Stella, Q., Johnson, E.S. et al. (2014). Personal care composition comprising a pre-emulsified formulation. Google Patents.
- 47Mohanan, A., Bouzidi, L., Li, S., and Narine, S.S. (2016). Energy 96: 335–345.
- 48Mohanan, A., Bouzidi, L., and Narine, S.S. (2016). Energy 100: 273–284.
- 49Mohanan, A., Darling, B., Bouzidi, L., and Narine, S.S. (2015). Energy 86: 500–513.
- 50Anzenberger, C., Li, S., Bouzidi, L., and Narine, S.S. (2016). Ind. Crop. Prod. 89: 368–375.
- 51Braksmayer, D.P., Bond, R., Bunnelle, W.L., and Quinn, T.H. (2013). Hot melt adhesive compositions comprising metathesized unsaturated polyol ester wax. Google Patents.
- 52Mol, J. (2002). Green Chem. 4: 5–13.
- 53Behr, A., Westfechtel, A., and Pérez Gomes, J. (2008). Chem. Eng. Technol. 31: 700–714.
- 54Biermann, U., Metzger, J.O., and Meier, M.A.R. (2010). Macromol. Chem. Phys. 211: 854–862.
- 55Li, S., Hojabri, L., and Narine, S.S. (2012). J. Am. Oil Chem. Soc. 89: 2077–2089.
- 56Tian, Q.P. and Larock, R.C. (2002). J. Am. Oil Chem. Soc. 79: 479–488.
- 57Schrodi, Y., Ung, T., Vargas, A. et al. (2008). Clean-Soil Air Water 36: 669–673.
- 58Patel, J., Mujcinovic, S., Jackson, W.R. et al. (2006). Green Chem. 8: 450–454.
- 59Rosenburg, D.W. (1985). To produce reduced chain length esters and alpha-olefins. Google Patents.
- 60Zlatanić, A., Petrović, Z.S., and Dušek, K. (2002). Biomacromolecules 3: 1048–1056.
- 61Refvik, M. and Larock, R. (1999). J. Am. Oil Chem. Soc. 76: 99–102.
- 62Schrodi, Y., Pederson, R.L., Kaido, H., and Tupy, M.J. (2013). Synthesis of terminal alkenes from internal alkenes via olefin metathesis. Google Patents.
- 63Nickel, A., Ung, T., Mkrtumyan, G. et al. (2012). TopicsCatal 55: 518–523.
- 64Pillai, P.K., Floros, M.C., and Narine, S.S. (2017). ACS Sustain. Chem. Eng. 5: 5793–5799.
- 65Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2017). J. Am. Oil Chem. Soc. 94: 133–147.
- 66Pillai, P.K., Mohanan, A., Bouzidi, L., and Narine, S.S. (2016). Ind. Crop. Prod. 94: 431–444.
- 67Papa, A.J. (1970). Ind. Eng. Chem. Prod. Res. Dev. 9: 478–496.
- 68Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2016). Ind. Crop. Prod. 84: 205–223.
- 69Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2016). Ind. Crop. Prod. 83: 568–576.
- 70Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2016). J. Appl. Polym. Sci. 133: 43509. doi: 10.1002/app.43509.
- 71Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2016). Ind. Crop. Prod. 84: 273–283.
- 72Hojabri, L., Kong, X., and Narine, S.S. (2010). J. Polym. Sci. A Polym. Chem. 48: 3302–3310.
- 73Hojabri, L., Kong, X., and Narine, S.S. (2010). Biomacromolecules 11: 911–918.
- 74Fonseca, L.R., Bergman, J.A., Kessler, M.R. et al. (2016). Self-metathesis of 10-undecen-1-Ol with Ru-amine-based complex for preparing the soft segment and chain extender of novel castor oil-based polyurethanes. Macromolecular Symposia, vol. 368, 30–39.
- 75Fonseca, L.R., Bergman, J.A., Kessler, M.R. et al. (2016). Macromol. Symp. 368: 30–39.
- 76Pillai, P.K., Li, S., Bouzidi, L., and Narine, S.S. (2018). J. Appl. Polym. Sci. 135: 46616.
- 77Li, H., Caire da Silva, L., Schulz, M.D. et al. (2017). Polym. Int. 66: 7–12.
- 78Li, S., Bouzidi, L., and Narine, S.S. (2017). Eur. Polym. J. 93: 232–245.
- 79Wagener, K., Brzezinska, K., Anderson, J. et al. (1997). Macromolecules 30: 7363–7369.
- 80Rio, E.D., Lligadas, G., Ronda, J. et al. (2011). J. Polym. Sci. A Polym. Chem. 49: 518–525.
- 81Lebarbé, T., More, A.S., Sane, P.S. et al. (2014). Macromol. Rapid Commun. 35: 479–483.
- 82Río, E.D., Lligadas, G., Ronda, J.C. et al. (2011). Macromol. Chem. Phys. 212: 1392–1399.